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Preface

This book originates from a workshop organised by ESPRIT project 20 477, ARES in
Las Palmas de Gran Canaria, Spain, February 1998. ARES is an acronym for
Architectural Reasoning for Embedded Systems. Within this project we investigate
techniques to deal with problems of software architecture of families of embedded
systems. It is the second workshop organised by this project. Its predecessor was held
in Las Navas de Marques, Spain, November 1996. The proceedings of the first
workshop are only available in electronic format at "http://www.dit.upm.es/~ares/".
The second workshop succeeded, even more than the first one, in gathering many of
the most prominent people working in the area of software architecture for product
families or product lines.

This second workshop consisted of six sessions. The first session was meant to
report the ARES results, according to the topics of the next five sessions. The
remaining sessions dealt with different aspects of software architecture, focussed on
applications for product families or product lines. Because there will be a separate
book covering all ARES results, the first session is not included in this book.

The workshop was chaired by Henk Obbink from Philips Research and Paul
Clements from the Software Engineering Institute at Carnegie Mellon University.
They prepared and presented an overall conclusion at the end of the workshop. This
conclusion was used in the introduction to this book.

The programme committee consisted of people from all ARES partners:
Wolfgang Eixelsberger ABB Research
Mehdi Jazayeri Technische Universität Vienna
Jeff Kramer Imperial College
Juha Kuusela Nokia Research
Frank van der Linden Philips Research
Jeff Magee Imperial College
Henk Obbink Philips Research
Juan Antonio de la Puente Universidad Politécnica de Madrid
Alex Ran Nokia Research

The workshop was held at a great place, with a good climate, due to the good work
of the local organisers: Juan Carlos Dueñas and Alejandro Alonso from Universidad
Politécnica de Madrid and Javier Miranda and Francisco J. Guerra from the
Universidad de Las Palmas de Gran Canaria.

Sessions were chaired by people from outside the ARES project: William Scherlis,
Dewayne Perry, Jean Marc DeBaud, Paul Clements, and David Weiss. They had a
facilitator’s role in guiding the discussion. Because of the structure of the workshop
there was a large amount of discussion. Reports of the sessions were prepared by
people from the programme committee and reviewed by the session chairs. These
reports are presented as the introductions to the sessions in this book.

Eindhoven, June 1998  Frank van der Linden
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Introduction 

Henk Obbink
1

, Paul C. Clements
2

, Frank van der Linden
1

1

Philips Research Laboratories, Prof Holstlaan 4 

5656 AA Eindhoven, The Netherlands 

{obbink,flinden}@natlab.research.philips.com 

2

Software Engineering Institute, Carnegie Mellon University 

Pittsburgh, PA 15213 USA 

clements@sei.cmu.edu 

Many companies are looking for ways to minimise the costs of developing new products and to maximise 
sharing and reuse of software structure and components used in a product family. The ESPRIT IV project 
20.477, ARES (Architectural Reasoning for Embedded Software), focuses on methods, techniques and tools to 
manage the diversity of products in a family at the level of software architecture. The charter of ARES is to find 
ways to help design reliable systems with embedded software that satisfy important quality requirements, 
evolve gracefully and may be built in-time and on-budget. ARES also addresses the problem of relating the 
features which differentiate the members of a product family to an architecture for that family. ARES aims to 
address the variance required by a product family at the architectural level and to map a feature selection to an 
instance of an architecture. Topics of interest also include specification of software architecture, architecture 
recovery, assessment of software architecture, and other subjects related to development and evolution of 
software architecture for product families. This project is a joint project between Nokia (prime contractor), 
Philips, ABB, Imperial College London, Technical University of Madrid and the Technical University of 
Vienna.  

In order to share and compare the results of the ARES project with the results of external efforts the ARES 
project has organised two workshops on the Development and Evolution of Software Architectures for Product 
Families. These proceedings are the result of the second of these workshops1. An explicit goal of the second 
workshop was to gain insight in the state of the art (academia) and the state of practice (industries) in the 
development of software architectures of product families/product lines. Moreover we wanted to know what are 
the most promising paths to be taken for both industries and academia. Finally insight should be obtained for the 
usefulness of the work of the academia for the industries.  

There were 45 participants:  
• 36 from Europe 
• 8 from the United States 
• 1 from Singapore 
• 17 from the ARES project 
• 20 from Universities 
• 25 from Industries.  

1. Sessions 

Based upon the topics of interest for ARES, and the expected participants, we separated the workshop into 

the following sessions: 

1. ARES session 
2. examples of architectures for product lines 
3. architecture description 
4. architecture analysis 
5. architecture recovery 
6. process issues 

                                                           
1 The proceedings of the first workshop were not published. The accepted position papers can be consulted at the ARES 

web-site at UPM: http://www.dit.upm.es/~ares/ 
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During the ARES session an ARES representative spoke about current ARES work in each of these areas. 
ARES work revolves around running case studies with tractable but real systems: 

• Automatic train protection (ABB) 
• Cellular Phone (Nokia) 
• Network element (Nokia) 
• TV-set (Philips). 
 Most case studies are winding down, since the ARES project itself is coming to a close this year. The result 

will be a book detailing the case studies and their results, with a publication target of late 1998. 
The majority of the workshop time was spent in technical discussion sessions. Each session was represented 

by 4-9 papers submitted by attendees (and assigned sessions in advance). Each session was assigned a 
facilitator/chairman from outside the ARES consortium and an ARES representative who acted as a scribe and 
who produced a summary of his session. 

2. Results of the Workshop 

The emphasis was on discussion, not presentation, and so authors were permitted only a couple of a slides and a 
few minutes at most to present their ideas. Each session lasted 90 minutes.  

As most sessions are preceded in this book with an introduction presenting the main results. We will only 
give a global view of the results of the workshop. The following themes permeate all of the sessions: 

Towards Engineering Practice 

Recognition of specific goals at each step, and orienting the work (creation, description, analysis, recovery, 
process) towards the fulfilment of those goals. We are not interested in architecture manipulation for its own 
sake, but only for the furthering of enterprise aims. 

Recognition of business and organisational concerns. This is an instantiation of the first two points. What are 
the arguments for and against a separate organisational structure for core asset creation and maintenance? The 
major non-academic organisations present were asked, to explain their organisations’ approach to architecture 
evaluation. Experiences with SAAM, ATAM and SARB process. The ARES industrial representatives (ABB, 
Nokia, Philips) had initial experiences with the use of architecture reviews. 

The Architecture examples were very much welcomed, but there was a feeling that little insight given as to 
how these architectures were created. Interesting were the economic issues that were raised here. 

A mature product family development process includes architecture recovery. Messy though it is, 
architecture recovery was thought to be an essential part of product line development: The assertion was made, 
and not challenged, that the great majority of product lines are built from existing assets. There are three sources 
of information for architecture recovery:, all are even important  
1. Source code, which is authoritative and dependable but contains by no means all of the information; 
2. Documentation, which is undependable, incomplete, and informal; and, 
3. Human experts, who are dependable, but biased. 

A short (and potentially incendiary) discussion ensued about the role of academia in investigating product 
line issues: Are they fulfilling their mission by providing only technology with little concern for the 
organisational and enterprise issues we know to predominate in product line production? Can the technologists 
not team with business schools in their institutions to better serve the practicing community? As one might 
expect, this issue was not settled. 

Stakeholders

Recognition of the importance of stakeholders. Similar to the first point, this makes it clear that architects 
answer to stakeholders, and a beautiful but unprofitable architecture is in demand by no one. The highest risk, it 
was felt, was being able to meet all the different clients’ needs with systems that were versions of each other 
produced from a single common asset base.  Examples of stakeholders, unique to a product line development, 
were mentioned: product line architect, builder of generic (core) assets,  builder of product from generic assets, 
product line maintainer, marketer / funder 

People

Emphasis of people over technology. At this workshop, at least, people issues tended to dominate the 
presentation of exotic new technologies. (During the response session, technology was roundly defended as 
essential. But for whatever reason, it was not the main focus of this gathering.) 

Economic models, it was felt, were talked about quite a bit but not used as justification to launch a product 
line effort. Rather, convincing appeals in intuitive and intellectual grounds suffice to convince management to 
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proceed. Note the absence of ‘lower cost’ as main economic issue, which is dominated the non-availability of 
skilled people for hire at any price.  

Relation to Other Fields 

More than one speaker pointed out that other engineering disciplines have been building product families for 
generations. Is it not possible that we can learn from them? At this point, the workshop adjourned. 

Variability 

At precisely the same minute that the session on architecture description began, a near-total solar eclipse 
engulfed the locale. This may have distracted the focus of the discussion, which was about a common purpose, 
goals, or the audiences for whom ADLs are intended to serve. Less emphasis was upon the specific ways 
variability can be described, using indifferently whichever ADL is appropriate. There were several contributions 
dealing with this issue. In many circles these days mentioning ‘architecture description’ conjures up ADLs 
automatically. So it was here. 

Fulfilment of the Goals 

Not all goals of the workshop were fulfilled. We got insight in the state of the art (academia) and the state of 
practice (industries) of the development of software architecture of product families. Some insight is obtained 
about the relationship between them. We may conclude that we are just starting to investigate the field and not 
many successes can be claimed. The academia need to learn about the problems that occur during large scale 
developments. The industries use any techniques that seems useful. The best way to proceed is in co-operation 
where academia are involved in industrial development. There still are too many open issues and no clear paths 
about the way to proceed in the future, both for academia and industries. Each of the activities presented here 
may grow to be an important issue in future product-line development. 

 
This was the second such workshop, sponsored by ARES. Since ARES is concluding, there will no third 

workshop, at least sponsored by ARES. The general chair asked for a show of interest of continuing the 
workshop under some other auspices. As interest in product line production is clearly on the rise, and we have 
but scratched the surface of interesting and compelling technical and organisational issues. Most participants  
expressed interest. We are presently investigating new sponsors to step in and take the leadership in this 
important community. 
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Session 1: Example Architectures 

William Scherlis1, Juha Kuusela2 
1School of Computer Science, Carnegie Mellon University 

Pittsburgh, PA 15213, USA 

scherlis@cs.cmu.edu 
2Nokia Research Center, P.O. Box 45 

FIN-00211, Helsinki Finland 

Juha.kuusela@research.nokia.com 

 

This session was presented on a number of examples on architecting product families. Based on these 

examples the panellist discussed: 

• Economic issues  

• Management and risk  

• Measures  

• Personnel 

related to product families. 

 

The examples were  

• Reusable Framework for Telecontrol Protocols presented by W.E.Kozlowski, ABB Transmit. 

• Software bus - a generic framework to achieve system extendibility, location independence, 

configuration support and hardware independence presented by E. Niemelä, VTT. 

• Three-Tier Design Approach for a Family of Large AC Drive Control Systems presented by P. 

Kolb, ABB Corporate Research. 

• A Control Software Architecture for the ABB Gas Turbine Family presented by C. Ganz, ABB 

Power Generation. 

1. Economic Issues 

Based on these examples it seemed that development of product family is incremental and also the costs 

are incremental and large up front investment is not needed. 

In ABB AC Drive control the profit centers came together saying they need a new control model - 

together with a bunch of ideas that should be included. Obviously they expected the development based 

on the new and common control model be cheaper than the approach they were using at the time. 

In ABB Turbine case originally there was an attempt to develop product family based on extra effort 

within a single product development project. It turned out to be impossible and a separate organisation 

was needed to build the basis for product family. 

Reliable economical justification is hard to get and often high management is required to support 

development of a product family based on belief. 

ABB Telecontrol case shows that sometimes there are clear business reasons - to enable the 

development work to be shorter in time and to move it outside to external subcontractors. 

Paul Clements pointed out that in a SEI workshop devoted to product families no one claimed that it 

would be cheaper - faster and with less people (plus subcontracting) is the need. 

Dewayne Perry reminded that product line requires reorganisation in the development unit. In ABB 

Turbine case the development is now running in the unchanged organisation but it is a problem.  

To estimate the gains produced by product line architecture we need estimates on how effort is 

distributed between generic and specific parts. In ABB turbine case the generic platform 5 py- common 

parts 6 py - application months. 

Bob Balzer noted that in estimating the economics we should remember that very few novel product 

lines are developed. The question is how to capitalise on previous system development to create the 

framework. If this is successful up front investment is actually pre-existing system development. 

We also noted that evolution is a problem. Actually product line is also evolving like products  this 

creates problems in evolving each product based on separate versions of product line. 
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Where is assessment applied - on the final product it is mandatory. Is product line assessed like an 

extension to the model - part of the model has to be replaced and thus triggers all Vs related to target 

platforms. 

2. Making Commitments 

Discipline is required to keep product family together. Several alternative to build in control like 

practices, processes, frameworks, patterns, and language features exists. What kind of discipline to use?  

ABB AC used language based restrictions - application engineers are familiar in programming in 

function block - not in a programming language like C - States already defined in the common layer - 

but activities can be assigned to them on higher layers. 

William Scherlis - With this scheme risk is in the blocks themselves - not in the mechanism to use 

them since for development you can use what ever you want but users get only the function block tool 

to create products. 

3. Styles   

These examples were based on Layers, Bus+agents, Components. 

4. Techniques 

Compose components, select components, configure/Intermediate components, Tailor/Customise, 

Rework/Replace 

5. Maturity in Organisations 

What maturity level you need to run a product line. Pane concluded that it is necessary to structure 

organisation according to roles determined by the architecture the organisation does not necessary be on 

higher maturity level in terms of CMM. 
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Reusable Framework for Telecontrol Protocols 

G. Cysewski1, T. Gromadzki1, H. Lyskawa1, M. Piechowka1, S.Szejko1,  
W. E. Kozlowski2, O. Vahamaki2 

 
1Department of Applied Informatics, Technical University of Gdansk, Poland 

macpi@pg.gda.pl 
2ABB Transmit Oy, Relays and Network Control, Finland 

wojciech.kozlowski@fimit.mail.abb.com 

Abstract. The paper presents a so-called COMSOFT framework of 
communication software development model based on object 
oriented architecture and design patterns. The library of reusable 
components supports reuse in all phases of the development process; 
it is intended to be generic with respect to the family of telecontrol 
protocols. The framework is supplemented with customisation 
guideline to help in refining the reused library so that deriving a 
working application becomes easier and more systematic. The 
elaborated solution is based on experience obtained during the 
development of the IEC-870-5-101 protocol interface for ABB 
monitoring and control devices. 

1. Introduction 

ABB Transmit Oy is currently developing a range of control and monitoring units 
with different number of process I/Os and scaleable hardware and software 
functionality. The product series REC 500 can be used for remote and local control 
and monitoring of pole mounted switches, ring main units, secondary substations 
and other equipment of medium voltage network. REC 500 units have to support 
serial communication with Network Control Centres (SCADA systems) and with 
the protection equipment installed in the substations. A variety of remote control 
protocols has to be implemented to enable REC 500 units to communicate with 
different types of SCADA systems according to international and national 
standards or due to specific customer requirements. These protocols include ANSI 
X3.28, RP570, IEC870-5-101, DNP, MODBUS and others, using such media as 
fixed cables, public and leased telephone lines, radio telephones, packet radio, 
cellular telephones, DLC. A suitable practical approach to develop portable and 
reusable communication software has become necessary to enable fast adaptation 
of REC 500 units to different market requirements.  

Frank v. d. Linden (Ed.): ARES ’98, LNCS 1429, pp. 6-13, 1998. 
 Springer-Verlag Berlin Heidelberg 1998 
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The main objective of COMSOFT project was a communication software 
development model of telecontrol protocols [2,6] aiming at the following 
improvements: 
• to make new protocol developments more effective by application of reusable 

components and design patterns (hence, the project focused on generic and 
applicable model of the telecontrol protocol class); 

• to shorten the time of protocol software portability to new environments 
(operating system, device application, functional profile); 

• to assure the product quality by reuse of reliable components and design 
patterns and by following documented development procedures. 

The proposed solution is based on: 
• placing the protocol software among well defined generic interfaces to the 

environment,  
• elaborated generic object oriented model of the protocol software, 
• reuse-based development process . 

In this paper we describe the framework derived from design and 
implementation of the IEC-870-5-101 protocol interface on REC 501 unit. We 
show what architecture, design patterns and components can be reused, how the 
library of these components is organised, and provide the set of rules of framework 
customisation. 

2. COMSOFT Reusable Object Oriented Design Framework 

A framework is a reusable, ''semi-complete'' application that can be specialised to 
produce custom applications. It is described by a set of abstract classes and the way 
how instances of those classes collaborate. Frameworks focus on reuse of existing 
designs, algorithms, and implementations in a particular programming language 
[4]. Components in a framework work together to provide a generic architectural 
skeleton for a family of related applications. A complete application can be 
composed by inheriting from or by instantiating framework components. Design 
pattern describes how to solve a particular kind of the design problem. 

A framework is documented in terms of its architecture and design patterns. To 
facilitate the development of a specific protocol software in a target environment a 
set of adaptation patterns may be used. Each of them contains a set of steps that the 
protocol developer is suggested to perform during framework customisation to 
include new protocol services and features (e.g. to apply to a new platform, profile 
or device). 

A model component is seen as any artefact through the development cycle. A 
reusable component may be a code module, but bigger benefits of reuse come from 
a broader and higher-level view of what can be reused. In the COMSOFT 
framework we decided to refer to the reusable design artefacts as follows: 
• software architecture, which describes the structure of a system on the level of 

its organisation and control; it describes the main components and objects, 
their functional responsibilities, the division of control, and the protocol 
(interface) for communication, synchronisation and data access, 
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• design patterns, which are solutions to specific design issues, 
• class libraries, which are collections of classes, 
• reusable skeletons that can support creation of project documentation. 

2.1 Software Architecture 

We assumed a layered system architecture as the basis for protocol software 
development [6]. It is organised as a hierarchy of layers, with each layer providing 
services to the layer above it and each layer being a client for the services provided 
by the layer below it. The architecture of a layer is object oriented. The main 
architectural decisions have been as follows (see Figure 1): 
• assumption that the development of the communication protocol interface is 

embedded into the identified generic interfaces: to the operating system 
(GEOPSY), to the device application based on Application Communication 
Interface concept (GACI), and to the communication link handler (GLHI); 

Com m unication Software Developm ent M odel

Generic Operating System  Services GEOPSY

Generic

Link

Handler

Interface

Handler

of the

Com m .

Channel

Generic

GACI

Device

Application

Database

+

Device

Application

Functions

Hooks to

environm ent

Target Operating System

Library of reusable

com ponents
�������������������������������������������������������������������������
�������������������������������������������������������������������������

Com m unication Software Developer’s Guideline.

CPA M anager

CPA Protocol

SAP

CPA

LL

AL

SAP

Generic protocol m odel

A fam ily of

telecontrol

protocols

IEC-870-5-

DNP
��������
��������RP570�������������

�������������ANSI
MODBU

Architecture pattern

Design patterns

Adaptation patterns

 

Figure 1 COMSOFT protocol framework context and protocol model boundaries. 

• decomposition of the protocol software (the so-called CPA - Communication 
Protocol Adapter) into two parts: CPAProtocol responsible for protocol 
transmission procedures and CPAManager responsible for handling complex 
transactions with the application software of the device. Services offered by 
these components are characterised by a set of use cases (corresponding to the 
services typical in the family of telecontrol protocols) [1]; 

• introducing service access point (SAP) subsystems to transport messages 
between layers; 

• introducing scheduler objects for scheduling operations of active objects 
(realisation of concurrency); 
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• separating components used to build a protocol into the following categories: 
environment dependent (interfaces), protocol dependent, application-
independent. 

Abstract classes used in the CPA architecture make the design flexible. They are 
designed to be used as templates for specifying subclasses rather than objects. The 
main generic components of the CPA software architecture are given in figure 2. 

 
Scheduler

Message

Executor

MemResource

BufferDataChunk

State

Lo

Plug

SAP

ActiveObject
Framer

Up

2

queues

activates

uses

uses

describeBy
currentState

guards

has

 

Figure 2 The overall object model of the CPA generic components. 

Generic components of the CPA are assigned the following responsibilities: 
MemResource - abstract class for all objects used to store and keep information for some 

period of time; 
Scheduler - decides which objects need to be activated; 
Executor - abstract class, specialisation of ActiveObject, used to run state machines of its 

inheriting subclasses, responsible for accepting messages, delegating them to its 
currentState; 

State - abstract class for objects representing states of Executor (owner of the state). 
Provides the following services:  
apply - this method tries to identify an event passed by the message and undertakes an 
appropriate action, 
activate - performs entry action defined for the state, 
perform - performs an action defined for a given state; 

Plug - abstract class, specialisation of ActiveObject, for object organised message transfer; 
SAP - abstract class, introduces an architecture to guard message buffers located between 

layers; it is used to transfer messages between the adjacent layers; 
Framer - abstract superclass which defines all operations required to manipulate the 

contents of frames. It is a protocol dependent object and should be specialised for all 
protocols and their layers. Each layer of the protocol stack has only one framer that 
supports operations on frame structures. 

Based on these generic classes the architectures of CPAManager and 
CPAProtocol are built. The architecture of the CPAManager is given in figure 3. 
The subclasses of Executor class correspond to protocol application functions (e.g. 
clock synchronisation, interrogation). Protocol Object Dictionary describes the 
mapping between protocol objects and device application objects. 
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Figure 3. Generic object model of CPAManager 
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Figure 4. Generic protocol layer model. 

ReceiverTransmitter

Executor

Transporter

 
 
 
 
 
 
 
The protocol layer architec-ture is given in figure 4. The transmitter class is 

responsible for outgoing transactions and the receiver class for incoming ones. The 
configurator manages layer configuration and exception handling. 

The CPA object model resulted from the protocol use case specifications and 
their related interaction diagrams. The latter allowed to represent behaviour of 
active objects using state transition diagrams [3]. 

2.2 Communication Protocol Adapter (CPA) Design Patterns  

A design pattern represents a solution to a design problem that might arise in a 
given context. The design pattern format used in COMSOFT framework explains 
the problem and its context, constraints, the solution, and a discussion of 
consequences of adopting the solution. The solution describes objects and classes 
that participate in the design, their responsibilities and collaborations (with 
examples). The main design patterns of COMSOFT framework are: Mapping 
between protocol and application objects, Composition pattern, Communication 
pattern, Scheduling pattern, Performance pattern, State pattern, Object testing, 
Protocol testing, Mapping object model to C language. As an example, the 
Scheduling pattern skeleton is presented below. 

Problem: Object oriented concurrency model making the composition of scheduling operating system 
tasks and of scheduling active objects within the operating system task. 

Constraints: The protocol software is embedded in the defined environment. For the IEC-870-5-101 
implementation it is assumed that the CPA Protocol and CPA Manager are mapped to a single 
task each, and there is no pre-emption while an object is processing a request. 
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Solution: Realisation of concurrency relies on scheduling operations of objects. All active objects have 
been generalised into ActiveObject class that can be registered by the CPAProtocol (CPAManager 
respectively) scheduler and invoked by it (activated) if required. The scheduler object�s method 
runCPAProtocol (runCPAManager) must be registered in system tasks scheduler to make CPA 
Protocol (CPA Manager) alive. Every object of ActiveObject class must have its implemented 
abstract operation activate. This operation is invoked by the CPAProtocol (CPAManager) 
scheduler when it decides that the object needs to be activated. 
The scheduler has two queues: normal and urgent. The normal queue is filled up during 
initialisation phase of the CPA Protocol (CPA Manager). This queue contains references to objects 
needed to be run periodically. 
The urgent queue is filled up during normal activity of CPA Protocol (CPA Manager) objects. This 
queue allows to resume all operations that have been stopped or invoked. Since the processor 
must be returned to the operating system in limited time, some operations need to be divided into 
steps. The urgent queue ensures that divided operations will be continued. 

The indicated patterns originate from project experience. They create basis for 
solutions of new problems, required modifications or extensions. Design patterns 
provide a common vocabulary for designers to communicate, document and 
explore design alternatives. They help to reduce the required learning time for a 
library user. 

3. COMSOFT Repository Organisation 

How the repository is structured can have a significant impact on its usability and 
maintainability. The COMSOFT repository is subdivided into a series of libraries 
referring to different software products (depending on a protocol variant, device, 
operating system, scope of applicability) [2]. Each library is organised into a 
hierarchy starting with components of general use; components in lower tiers have 
increasing specialisation resulting in narrower applicability. Two views of the 
library organisation can be distinguished: catalogue-based and methodological. The 
first one is based on creation of the structure of component catalogue according to 
software design concepts. This helps the designer to decide what components 
belong to the library and helps the user of the library in searching for needed 
components. 

The methodological view of the COMSOFT library organisation is determined 
by the assumed object-oriented approach and Prosa/om CASE tool [5] capabilities 
corresponding to the defined COMSOFT development procedure. Prosa/om 
supports creating and managing the hierarchy of components needed in the protocol 
development. Its hyperlink facilities permit traversing between hierarchical 
components in conformity with applied communication software development 
model. 

4. Usage of Patterns and Library in Protocol Development 

Adaptation patterns are semiformal recipes that describe how a documented 
framework in the library form is used to develop an application in a new situation 
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resulting from changes in the requirements corresponding to protocol profiles, 
devices, HW/SW environments. 

The main architecture of the proposed COMSOFT framework can remain a 
stable kernel in the future protocol software evolution/adaptation responding to 
requirements changes. In the reuse process the main objective is to find similarities 
between an existing protocol framework and the new project. Classification is the 
primary mean for the library user to search for suitable components. Our 
classification dimensions are the protocol type, protocol profile, environment 
requirements (device, operating system, channel). The designation of the change 
points is supported with design and adaptation patterns. It is worth to notice that 
adaptation patterns say what to do in order to make a change, while the design 
patterns instruct how to implement the change. The set of produced adaptation 
patterns is reflecting characteristics of the IEC-870-5-101 protocol and its 
implementation in REC 501: Initial change analysis (similarity), New protocol, 
Changes in the frame format, Link transmission procedure change: unbalanced vs. 
balanced mode, Extension of basic application functions, Changes in the number 
and types of application objects, changes in the contents of objects lists for cyclic 
acquisition or group interrogation, Communication with application database, 
Mapping a layered protocol structure into operating system tasks. 

Our suggested framework top-down customisation assumes the creation of a 
new library for the new project.  

The first step is finding a library project which is similar to the current one. The 
choice is based on results of using Initial change analysis adaptation pattern. The 
output of this step is a copy of the selected project and a list of changes demanded 
by the new project to fulfil its requirements. Next, in each phase of the protocol 
development adaptation patterns corresponding to the introduced changes can be 
applied. In case of the protocol framework we can identify most of the reusable 
components immediately. Adaptation involves removal of inappropriate parts or 
their replacement. For each particular situation we can use the related design 
patterns. 

This solution allows different projects not to interfere. However, having 
knowledge of the framework enables to start a new project not from scratch but by 
transferring elements of the previous project to the new one (figure 5). The main 
problem is to assess what changes are required by the new project. 
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Implementation

Reusability and portability concept: W model

c protocol development

cific protocol library development
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Specification

Detailed Design
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Figure 5. Reusability and portability concept - W model. 
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5. Conclusion 

The project was considered successful and the framework is intended to be used for 
subsequent protocol development. This paper has focused on an architectural model 
of telecontrol protocols and how identified design and adaptation patterns improve 
the framework flexibility and reusability. We have argued that understanding the 
architecture is the key issue in reusing the framework. 

The generic model of a class of telecontrol protocols has been defined in a way 
covering the system life cycle from requirements to its detailed design. Use case 
specifications were used for protocol application functions, interaction diagrams 
described the required protocol behaviour, high-level object structure conformed to 
protocol layer decomposition. It is, of course, difficult to draw any decisive 
conclusions from one project but the assumed concepts proved their value and 
usability. Moreover, it has shown effective to combine them in a sequence of steps 
leading from user requirements elicitation to detailed design and implementation. 
The main goal of the protocol framework was to serve as a logical scheme for 
development of the protocol software. The components are placed in a library 
allowing their storing, retrieval, referencing and manipulation, thus leading to 
shortening the time of producing communication software and assuring its quality. 
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Abstract. Flexible distributed embedded systems require a different 

kind of software development. Domain and product analysis defines 

the software features, dividing the architecture of the application 

software into stable platform services and customisable software 

components. The software platform supports transparent 

communication between reactive sub-systems, and a software bus 

acts as an intelligent agent utilizing the knowledge of the 

application and configuration domain to provide system-level 

services through a generic service interface. 

Each sub-system has a federative software architecture and co-

operative application components. Communication is controlled by 

one component, which manages local connections between reactive 

application agents and networked connections through the 

configurable software bus. Application components with  new 

product features can easily be added to the software bus by using 

the communication control component and the generic service 

interface. 

1. Introduction  

Distributed embedded systems need to be adjusted according to various customer 
requirements and commercial and customer specific technologies. The increasing 
number of product features and the diversity of customer requirements have 
resulted in a need to alter development and production processes to support 
evolution. A product family concept with well-defined software adaptability 
strategy is needed for expanding and scaling systems effectively during the 
evolution steps. 

Flexible distributed systems require a software development approach that 
takes into account the common requirements of the application domain but also 
focuses on the forecasted future needs. The software architecture designed 
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according to the given application domain requirements and constraints forms a 
basis for configurable and extendible embedded systems [1, 2]. 

We describe in this paper an application domain-specific distributed software 
platform for co-operative and distributed embedded applications. The applications 
act as reactive agents with responsibilities and capabilities for making low-level 
decisions, and co-operate with each other via a software bus, which acts as a 
network agent making decisions on the basis of the system-level application 
information incorporated in it. 

Although the application domain-specific distributed software platform is 
demonstrated in a distributed control system, the design approach is suitable for 
other kinds of distributed embedded real-time systems  which use the services of a 
commercial real-time operating system and a field bus, e.g. LON or CAN, as a 
communication medium. 

2. Flexible Distributed Embedded Systems 

Distributed real-time systems are often heterogeneous embedded systems, the 
response time requirements, use of memory, operation environments, etc. of 
which vary between the different parts. Software flexibility, scalability and 
robustness can be achieved in such environments  by constructing an application 
domain-specific distributed software platform and heterogeneous application 
components that are suitable for it. Certain criteria have been laid down for the 
distributed software platform and its architectural components. 
• Customisation. The platform must contain  generic services such as 

configuration and system-level control, which need a knowledge of product 
features and the application domain for decision-making purposes. Since the 
network configuration and connections between components are based on these 
product features, the platform has to have built-in intelligence regarding the 
application domain in order to make system-level decisions. 

• Software independence and extendibility. Application components must be able 
to be allocated freely to any node in the system, and the platform should 
provide transparent communication mechanisms. Application components 
should be as autonomous as possible, providing the system with its flexibility. 

• Heterogeneous implementation environment. The memory and timing 
requirements of a typical embedded real-time application should be guaranteed 
in heterogeneous environments. 

2.1 Control System Application Characteristics 

Modern control systems are decentralised, typically involving a number of 
embedded real-time controllers and possibly embedded PCs. For demonstration 
purposes we will refer here to an automatic repayment system for handling 
returnable bottles and cans. The system is responsible for different functions such 
as identification and acceptance of the bottles and cans, their transfer to a store 
and repayment (Figure 1). Optional features of the repayment system product 
family include different types of identification method, different repayment 
modes, user interfaces and conformity to particular national regulations. 
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The demonstration 

system consists of two 

neuron chip based nodes 

for process control, and an 

embedded PC with QNX 

operating system for the 

user interfaces, 

identification and control. 

Interfaces to external 

systems are also needed. 

Identification is based on 

measured data from a video 

camera or an EAN code. 
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Figure 1. Sub-systems of a distributed depositing 
system 

Neuron chips are used as 

embedded real-time 

controllers at the process 

level. An example of a process-level system is the transportation sub-system, 

which takes the form of a reactive agent able to carry out transportation jobs 

according to given orders. As the sub-systems have only a few configurable 

features, they are allocated to neuron chips with special size, performance, 

reliability, and safety requirements. 

2.2 Component-Based Software for the Product Family 

Software architecture has a significant influence on its flexibility, decomposition 
and adaptability. The application domain requirements establish the main 
characteristics of the architecture, and the software variations to be included in the 
product family define the necessary configuration methods. 

Domain Analysis 

The objective of domain analysis is to identify a set of autonomous software 
components, each of which fulfils a well-defined function in the system. This 
means that the basic function of the component should be clear, its optional 
features known, and its interfaces with other components adequately defined. 

The components identified in the domain analysis also define constraints on the 

software architecture. The viewpoint adopted in architecture modelling is purely 

functional rather than object oriented, and therefore methods such as ROOM and 

RT/SA which emphasise functional decomposition and state-based behavioural 

modelling are used for designing the mode and event-based operability of the 

system at the architectural level [3, 4]. Thus the framework provides a set of 

generic services and a software platform where the application components can be 

installed. One of the generic services could be a software bus allowing component 

interactions. 
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Configuration 

When software adaptability is required a configuring viewpoint has to be added to 
the software analysis, design and implementation. Feature-based software 
configuration can be based on component selection and/or component 
configuration. In the first case the system is constructed of components selected 
according to the product features, and in the second the configuration of the 
generic software components is fixed by setting the values of instantiation 
parameters. It is also possible to mix these component selection and 
parametrisation approaches. 

2.3 Systems Extendible by an Application-Specific Software Bus 

The increasing need for flexible systems brought about by changes in customers’ 
needs and general evolution means that distributed embedded systems have to be 
designed as autonomous software packages that can be added to the system 
afterwards or can replace an existing package. 

Despite the recognition of the importance of software components in reuse-

oriented embedded programming, not very much attention has been paid to the 

connections between components. CORBA and DCOM specifications are used in 

information systems to achieve interoperability between distributed applications 

[5, 6]. The interface definition language (IDL) in CORBA describes interfaces as 

parts of components, by  contrast with module interface languages and 

configuration programming languages [7]. Due to restrictions on CPU 

performance and the amount of memory in embedded systems, commercial 

CORBA implementations cannot be used in embedded real-time systems. To meet 

the needs of a particular application domain and product family, we have 

integrated these requirements as a set of features in an application-specific 

software bus. The following requirements are laid down: 

• It should be possible to add a new application to the system with a minimum of 
work. 

• Applications should be location-independent. 
• Hardware changes should not affect the applications. 
• Applications have to be loosely coupled. 
• The same software platform should be used for all product variants. 
The properties of the software bus and software architecture are based on these 
requirements. Firstly, a new application can be added to the system when 
applications are designed as agents that perform their own duties without any 
system-level decision, so that the system-level decisions can be made in the 
software platform.  

Secondly, applications are location-independent if they use a broker to achieve 

interoperability and have standard interface descriptions for their connections to 

the platform. Interface descriptions have been replaced by interface components 

and a software bus service interface.  

Thirdly, the services of the software bus attend to software interoperability. 

Contrary to the CORBA specification we describe the software bus as an 

application-specific broker which offers the basic services for component 
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interconnections, but application-specific services are also needed for message 

routing and synchronising the interoperation of application components. A 

facilitator which connects application agents to the software bus and to each other 

assists in loosening coupling between applications [8]. 

Lastly, we decided to use layered software architecture to meet the needs of a 

product family. Layered agent architectures can be based on data abstraction 

levels, functional decomposition or responsibilities. Hybrid agent architectures, as 

customarily employed with control systems, use the first two of these, i.e. 

hierarchical layers deal with data at different levels of abstraction and are named 

according to their functions, e.g. a modelling layer, a planning layer and a reactive 

layer [9]. The responsibility-driven approach is nevertheless more suitable for 

applying object-oriented or object-based technology to control systems, as the 

system is decomposed into autonomous sub-systems, or reactive agents, which 

take care of the defined functional responsibilities and  provide state information 

and services for other sub-systems. Messages of two kinds are needed between 

sub-systems: service requests for the software bus, and events for updating the 

state of the reactive agent. State information is distributed to other agents by the 

routing rules of the software bus. 

3. Mechanisms for Flexible Control Systems 

Stable architecture with a configurable software bus is an application-specific 
solution designed to increase the productivity of software development. The 
model is flexible in terms of the extendibility and scalability of the system, but it 
has strict rules for interfaces and communication. 

3.1 An Application Framework  

The software architecture can be divided into three abstract layers according to the 
scope of the control and the responsibilities discharged (Figure 2). The component 
layer controls the behaviour of reactive agents making low-level decisions, e.g. 
identifying an object using a predefined manner of identification and comparing 
the measurements with the reference object stored in the database, and the group 
layer consists of a communication component which is configured according to 
the needs of a group. If the group consists of numerous application agents, the 
communication component sorts out local and network messages.  
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The software bus has global
knowledge of the
representation of the system
layer in the software
architecture. Because of the
differences between product
variants and the physical
extensions needed,
configuration management is
integrated into the software
bus, which is an intelligent
agent that includes
configuration and co-
ordination mechanisms in
addition to different manners
of communication.

Communication with external systems is also supported by the software bus, e.g.
that in the example application includes network interfaces for LON and RS-232.
Messages between communication media are forked on the base of the network
configuration. The services of the software bus are used through a simple
interface which provides the functions for receiving and sending asynchronous
messages.

3.2 A Lightweight Communication Interface for Application Agents

The communication interface in sub-systems handles all communication between
the sub-system and the software-bus. In LON nodes the interface is simply the
LON network image, which consists of information about the network variables
and knowledge of their bindings. In sub-systems other than the LON nodes, the
communication interface is a bit more complicated, and directs all messages
between the sub-systems to the software-bus, which routes the messages into the
correct sub-system. Thus, there are two different communication interfaces, the
type of which is judged by the sub-system they reside in.

Communication inside the sub-systems is based on service-on-request
principle. Each sub-system consists of the communication interface and one or
more application agents. If one application agent needs information from another,
a request is placed and the information is supplied when available. The
communication component is placed in the blocked state while waiting for an
answer.

3.3 A Configurable Software Bus as an Intelligent Router

The software bus is divided into interfaces and components, with their own
responsibilities as presented in Figure 3. The network includes its own
component for managing network configurations and interfaces with both
networks and application components. Applications are configured by the
application configuration management service. The application domain

LON node E P C

Software bus

Service Interface

Conf igurable
Appl icat io n

Agent

Conf igurable
Appl icat ion

Agent

Communicat ion
Interface

Communicat ion Inter face

Conf igurable
Appl icat ion

Agent

Figure 2. A federation of software agents.



www.manaraa.com

20 Eila Niemelä et al. 

 

platform is built into the application co-ordination component. In a simple system 
this component needs restricted decision making rules, but in larger systems it 
comprehends the whole system-level control and may be allocated to a number of 
nodes. 

The software architecture and 

communication rules form the 

stable part of the system, and 

configuration is only allowed by 

the software bus in accordance 

with the communication rules. 

Thus the system can be extended 

by adding new sub-systems 

which communicate in the same 

manner, i.e. according to same 

rules. Adaptability in the system is achieved by configuration mechanisms 

integrated into the software platform. Different features of the product variants 

could be implemented by adjusting the functions of the sub-systems, i.e. by 

increasing or configuring their internal components. 

Service Interface

Routing

Application

Cooperation

Application

Configuration
Network

Configuration

Network Interface

Figure 3 Structure of an applicaton specific 
sofware bus. 

The software bus has been implemented for a control application which uses a 

LON network and a serial communication connection as its communication 

medium and it currently includes the following services: 

• asynchronous message passing, 
• memory management, 
• network interface, 
• intelligent routing mechanisms, and 
• configuration management for application agents and the network interface. 
The passing of asynchronous messages and memory management are primary 
level services. The network interface is a necessary set of two-level interfaces, in 
which a LON network is used a basic distribution medium in the example 
application, although external equipment, e.g. a card reader, may be connected via 
a serial communication channel. The software bus offers a transparent 
communication in both networks. The connections between the network interface 
layer and other components of the software bus are illustrated in Figure 4. The 
network configuration consists of the configuration component for the 
connections of the LON network variables and the message frames for the card 
reader. In the application example, LON configuration is performed manually 
with a LonBuilder tool and exported to the neuron chips of the application nodes. 

Co-ordination of application agents and message routing are managed by 

means of intelligent routing mechanisms and the primary services, asynchronous 

message passing and memory management services. The message types that the 

software bus can handle are defined in data structures inside the software bus 

itself. 
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Figure 4. Components of the configurable 
network interface layer. 
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The intelligence of routing is based 
on the contents of the message being 
handled (Figure 5). The status of the 
phase attribute in objects defines the 
message to be sent and the recipient 
application. Information on objects 
is stored in an object database and 
updated from the results of the 
application agents. Continuos 
treatment operations of different 
kinds are classified in a separate 
database according to the types of 
objects. The router co-operates with 
the user interface on the basis of 
interactions between the user and a 
command operation database, which 
consists of interactions and the 

corresponding 
information to be 
routed to the 
graphical user 
interface. Since 
transportation is 
handled through 
the message 
passing services, it 
does not affect to 
the object data. 
Management of the 
configuration of 
application agents 

is very simple and is based on data configuration. Data for all possible 
configurations at the product family level are stored in the software bus and active 
parts of a configuration are defined when initializing the system. 
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Figure 5. The intelligent routing mechanism. 
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4. Lessons Learned 

The application-specific software bus yields the following advantages for 
software development in a product family context: 
• Existing systems can easily be extended by means of new applications. 
• Applications are location-independent, on account of the transparent 

communication mechanisms. 
• The centralized communication component in a node simplifies connections 

with other application agents. 
• The lightweight communication interface is suitable for demanding real-time 

applications with limited memory. 
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• Implementation-specific parts are hidden in the software bus and are not visible 
to the application agents. 

• Customization is easy due to the gathering of configuration mechanisms into 
one place, the software bus. 

The size of the software in our application example was about 30 Mb, including 
the following commercial components: the QNX, a Photon micro kernel, and 
drivers. The software bus takes about 80 Kb. The size of the object database 
depends on the number of objects to be contained in the system at the same time. 
Each object needs 52 bytes for its status data and much more for its image data, 
depending on the identification technique used. The application software in the 
neuron chips amounted to 2 Kb. 

In the example, the services of the software bus were allocated into a node, the 

embedded PC, and the other  nodes were very simple. Communication inside a 

node was frequent and fast in this case, and only a few messages were transmitted 

between nodes. Software allocation can also be performed by dividing the 

software bus into nodes in order to balance the work load inside them. On the 

other hand, this allocation procedure can cause network capacity problems, 

because the load in the network tends to increase. Exceptions are dealt with an 

exception handler, which logs them in error logs and tries several times to solve 

the resulting problems. These attempts are also stored in the history log. 

The following restrictions on the development approach may be regarded as 

weaknesses:  

• The maturity of the software engineering process should be quite high. 
• The configuration is performed by reference to data and is decided for the 

product variants known in advance. 
• The routing intelligence is designed for one network, and more intelligence is 

needed if the network is hierarchical and includes different networks. 

5. Conclusion 

Flexible distributed control systems need support to achieve customisation, 
extendibility, and scalability. This is possible by developing a configurable 
software bus and generic interface technique for applications. The software bus 
supports distribution by the transparent communication and a feature-based 
configuration. A standard service interface is provided for application agents 
which are connected to the software bus by a  lightweight interface and a generic 
communication component. The software bus provides intelligent message 
routing and configuration support for the changes in application software 
components and the communication media. The requirements of the application 
domain are fulfilled without any additional features which are not useful for the 
product family. For this reason, the code size and execution time can be optimized 
according to the real-time requirements. 

The next phase of our work will focus on enhancing the intelligence of the 

software bus by developing a form of configuration support which is able to 

configure itself for a hierarchical network with heterogeneous sub-nets. 



www.manaraa.com

  A Software Bus as a Platform  23 

 

6. References  

[1] van der Linden, F.J., Muller, J. K. Creating Architectures with Building 

Blocks, IEEE Software, 12 (6), pp. 51-60 (1995) 

[2] Kalaoja, J, Niemelä, E., Perunka, H. Feature Modelling of Component-

Based Embedded Software. Proceedins of the 8th IEEE International 

Workshop on Software Technology and Engineering Practice, Los Alamitos, 

CA: IEEE Comp. Soc. pp. 444-451 (1997) 

[3] Shlaer, S., Mellor, S. Object Lifecycles, Modelling the World in States, 

Prentice Hall Inc, Englewood Cliffs, New Jersey (1992) 

[4] Selic, B., Gullekson, G., Ward, P. Real-time object-oriented modeling, John 

Wiley & Sons, New York (1994): 

[5] Siegel, J. CORBA Fundamentals and Programming. John Wiley & Sons, 

Inc. New York (1996) 

[6] Grimes, R., Professional DCOM Programming, Wrox Press Ltd., Canada, 

(1997) 

[7] Bishop, J., Faria, R. Connectors in Configuration Programming Languages: 

are They Necessary?. The 3rd International Conference on Configurable 

Distributed Systems. IEEE Comp. Soc., Los Alamitos. pp. 11-18 (1996) 

[8] Genesereth, M., Ketchel, S. Software Agents. Comms. of the ACM. 37 (7) 

pp. 48-53 (1994) 

[9] Wooldridge, M., Jennings, N. Intelligent Agents: Agent Theories, 

Architectures, and Languages: A Survey. Lecture Notes in Artificial 

Intelligence, Vol. 890. Springer-Verlag Berlin Heidelberg New York (1995) 



www.manaraa.com

Frank v. d. Linden (Ed.): ARES '98, LNCS 1429, pp. 24-31, 1998.
 Springer-Verlag Berlin Heidelberg 1998

A Three-Tier Design Approach for a Family of
Large AC Drive Control Systems

Peter Kolb1, Beat Huber2

1 Computer Engineering Dept., ABB Corporate Research LTD
CH-5405 Baden-Dättwil, Switzerland

peter.kolb@chcrc.abb.ch
2 R&D Drives and Power Electronics

ABB Industrie AG
CH-5300 Turgi, Switzerland

beat.huber@chind.mail.abb.com

Abstract. Software for large embedded systems (e.g. control
systems for locomotives or large industrial drives) consumes a
steadily increasing proportion of the engineering costs for
development and maintenance. For this reason our goal is to share
the effort by developing  software that fits for several related
products or product families. Not only the implementation, but also
the software architecture and design shall be reused in similar
applications. Replacing a hardware component or adding a
customer desired feature in an application shall result in very
limited changes in the control system software. As a solution for
this common situation this paper defines a layered software
architecture, which is designed for maximum reuse on different
levels. The paper illustrates the internals of the common software
layer, describes how it is used to build variants for different drive
topologies, and how the lower layers were designed for fast
application building.

1. Motivation for Reuse

The last two decades have shown that computing power grows much faster than
innovation emerges for power hardware of large industrial drives (i.e. motors,
power converters, transformers, etc.). Therefore an increase in efficiency of an
industrial drive can be reached more easily by utilising the computer power of
modern control systems instead of exchanging power hardware parts of the
machine, which are five times more expensive.

With the traditional life-cycle of a large industrial drive of 20 to 30 years, the
current situation arises, where the drive control system will be updated or
replaced up to three times before decommissioning - assuming that computer
technology continues to progress at its current rate.

mailto:peter.kolb@chcrc.abb.ch
mailto:beat.huber@chind.mail.abb.com
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Exchange of a control system in an existing industrial drive by a more powerful
one offers many new opportunities, like improving control algorithms or adding
more and more features and realising them in software instead of electronic
hardware. This is the reason why control systems rapidly grow in complexity.
Inherently with the complexity comes increased effort for the engineering of the
control system software according to customer demands.

The only way to reduce engineering costs and to cope with increasing
complexity is the well-proven concept:
1.  Proper structuring of the control software.
2.  Reuse of components and, as far as possible, also of software design and

architecture.
This means we need to look for a hardware independent software description

which allows the reuse of general solutions in the problem domain, software
architectures, and software components when the control system hardware is
replaced. This paper shows how control software can be structured to improve
reusability on several levels and to support easy portability between platforms.

Apart from life-cycle considerations there is another motivation for reuse of
control system software: Industrial drives are not only needed in a wide spectrum
of applications, ranging from rolling mills over chemistry to marine applications,
but also vary greatly in their structure (see Figure 1). At ABB Industrie these
various power hardware topologies are classified in a few main families, e.g.
• The Cyclo Converter Family (consisting of a transformer, several line

converters and an excitation) with excellent behaviour at very slow
revolutions.

• The Load Commutated Converter (LCI) Family, which consists of an
intermediate circuit that de-couples the line from the effects of the motor.

 

available as 1*3 pulse, 2 *3 pulse,
6 or 12 pulse topologies

Cyclo Converter Family: LCI Family:

6 pulse topology

12 pulse topology

2 *6 pulse topology

transformer

conver ters

intermediate c i rcui t

synchronous  moto r

exci tat ion

M

M

MM

 Figure 1:  Classification of Drive Topologies at ABB Industrie

 These large variations in topology combined with a small number of drives
sold per year are the main reasons for high average engineering costs for the drive
control software.
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 Effective means to reduce the engineering effort for drive control applications
are the reuse concept and the subsequent software architecture, both covered by
the three-tier design approach which has been recently developed at ABB
Industrie supported by ABB Corporate Research in Switzerland.

 2. Overall Software Structure

 2.1 Software Levels for a Product Family

 Structuring of the software for the broad family of drives has been done under
manifold objectives:
• Maximising the portion of reused software in spite of distinct topologies and a

priori unknown individual customer demands.
• Separating hardware specific parts to ease porting of the software and to

improve software reuse when the control system hardware is replaced.
• Providing optimal programming tools and languages for software engineers

working on different abstraction levels.
The result is the layered software architecture consisting of four layers (see

Figure 2).
In summary,

these layers
describe a bottom-
up abstraction
hierarchy:

The basic
software layer
provides the real-
time kernel with
task scheduling,
memory
management, and
all hardware

specific software drivers for external devices (I/O devices, displays, etc.). This
part might be an off-the-shelf real-time operating system which is further enriched
by the necessary drivers. All hardware dependent functionality is clustered in this
part of the software structure and separated from the commonly reused part by a
clear interface. If the software should be ported to another control system, this
layer would need to be re-written.

The common software layer is the software part which is comprised of the
components for creating all the variants in topology that have been foreseen. With
these components the control software for a specific drive topology can be
designed, and may then be used to realise all species of this drive family. The
application building interface of this layer is a set of function blocks. For the
internals of this layer the programming language C was chosen to retain utmost
flexibility in developing the real-time functionality needed in every motor control

Common Layer

Basic Software Layer

Software Layers:

C

C, Assembly

Function Block 
Language

Programming
Language:Engineering:

Application Layer

Topology Layer

customer specific 
add-ons 

framework considering
all predicted variations 

one solution for each
drive topology 

hardware specific
functionality 

C

Figure 2:  Common Structure of the Drive Control
Software Optimised for Reuse
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application that has been predicted. This layer is the software with the highest
reuse potential and therefore the longest life-cycle. Its future evolution must be
thoroughly controlled and its internal structure must be designed to enable the
addition of topologies that have not been considered at moment.

The topology layer gives the opportunity to design the control software for a
new power hardware topology, which can then be used for a set of slightly
varying applications. This means that on the topology layer the model diversity is
narrowed to one specific topology. The life-cycle of topology layer software is
determined by the market demands for this specific drive topology. The topology
layer is written in C by experts who know the function blocks of the common
software layer.

In the application layer, remaining customer specific features are added to the
software for a certain drive topology. As application development is done by
engineers in a profit centre with no deep programming experience, we proposed
for this layer a graphical function block language, for instance IEC 1131-3.
Thereby, an application engineer can program customer desired functionality on a
high level of abstraction by simply selecting and combining appropriate function
blocks provided by the topology layer.

3. Details of the Software Layers

3.1 Common Layer Framework Architecture

In order to provide a set of function blocks for creating drive topologies, which
are used for application development, the common software layer must be
structured into entities that are required in all topologies (see Figure 1). This is
called domain engineering ([5]). Preferably the division of operational
functionality among software architectural types should lead to software entities
which coincide with the boundaries of the smallest power hardware entities of the
drive. Thereby we achieve that a replacement of a power hardware component
has only local effects on the software. The result is a set of functional units, each
of which solves a limited functionality.

Once a rough decomposition of the common part is established, it is necessary
to design means for creating a specific topology with the common part
components. In [1] this aspect is called the “coordination model used among the
architectural types”. Next there must be a clear interface defined for application
building with the topology specific software. Guidelines must be established
which describe how the software shall be extended by customer demanded
features.

To establish a basis for reuse of the common software layer we clearly defined
which program behaviour is to be pre-defined and fixed for every topology, and
which shall be left unspecified for individual customer design. In this respect the
common software part can be seen as a framework ([6]) which is “a set of classes
or modules that embodies an abstract design for solutions to a family of related
problems” (from [7]). Unlike a library the framework not only provides a set of
functions, but also pre-defines how these functions are already partly connected
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and shall be completed by a topology and application builder using this
framework.

The building blocks of our framework are the functional units which provide
one or more solutions for commonly identified software components, i.e. Current
Control, Firing Logic, or Synchronisation which are common to all applications.
Further, the common software layer offers alternatives for only partly specified
components, or components that are mainly assembled by an application engineer.

With this concept of supplying not only completed functional units, but also
sub-components to build new functional units on application level, we define
different levels of modularization between system functions in the context of
variation (modular design, [8]). However, the variation is restricted to lie within
the predicted topologies, otherwise a re-design of the framework would be
necessary.

Further, in the
common layer we
realised a general
concept of a pre-
defined system be-
haviour (i.e. start-up
the controlled drive,
behaviour in normal
operation or in case
of an error). The
system behaviour
description consists
of a special state dia-
gram, which is mainly
defined in the

common software layer (see Figure 3), but whose execution is controlled from the
application layer (firing a transition by events, executing a application specific
sequence as a state activity).

3.2 Topology Layer Concepts

At the topology layer, instances of functional units are connected with each other.
A functional unit is a component with limited functionality realised by several
internal calculation routines and a standardised interface (Figure 4):

Internal calculations in a functional unit are either called repetitively with a
specified task cycle-time, or are triggered by events which are passed from the
outside to the functional unit via its control inputs.

The control outputs are binary values which indicate the current calculation
status of the functional unit. A change of status can be interpreted as an event
which is passed through the control output and might trigger other functional
units.

For internal calculations in a functional unit, e.g. a PID control algorithm,
several sampled continuous time signals (process variables in real value format)

Motor_of f

1 startup_motor

Motor_running

star tup [MCB_on]
/prepare_start

s tate 1

state 2

sequence wi th  appl .
speci f ic  operat ions

transit ion:
event [condi t ion]  /act ion

Appl icat ion PartCommon Par t

star tup_motor
sequence to
start  s ingle

dev ices

startup

star tup [MCB_on]

MCB_on  =  1

prepare_start

control /status

 start  sequence

 sequence f in ished

Caption:
9 O F F 1 SequenceW A I T  O F F 3
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Figure 3: State Diagram Behaviour



www.manaraa.com

A Three-Tier Design Approach      29

are required. They are provided by the
continuous input. The quasi-continuous
time results of a functional unit
calculation are passed on to its continuous
output.

Further, a functional unit might provide
additional functions that can be called
directly by an application builder (and not
via an control input event).

Interconnection of continuous time
signals of functional units is done on the
topology layer. It does not require further
explanation. The connection of control
and status words between different

functional units is more sophisticated. We have to distinguish two types of
communication: loose coupling without synchronisation and tight coupling with
synchronisation between functional units (for an exact definition see [4]). For
most of the control events exchanged in the drive control systems product family,
the communication types can already be defined at the common software layer.
Thus, the communication details can be hidden within the functional units. At the
topology layer an engineer then only has to connect the right events to the control
input of the functional unit and need not worry about the communication type or
the internal realisation of the functional unit.

Similarly, it is possible to provide task cycle-times for quasi-continuous time
calculations of functional units (as far as the computing power of the target system
is already determined) to a great extent in the topology or even common layer. For
instance the process signal sampling rates for fast control algorithms, are most
often not a subject of customer demand, but a characteristic of the algorithm
chosen. Nevertheless, there must be sufficient computing power reserved for the
less time-critical features added on the application layer.

4. Three-Tier Reuse Approach

4.1 Steps to Go

Now that the software architecture for the family of drive control systems has
been well established, we show how it shall be used to develop software for a
certain topology, and to build upon this layer customer specific applications.

This three-tier design approach requires the following steps (Figure 5):
Step 1: Learn to understand the framework of the common layer.
Step 2: Apply the framework to a single topology and thereby narrow the scope
to a small set of similar applications:
a)  Create a specific program instance by selecting building blocks for the

topology from the functional units of the common software layer.
b)  Interconnect the building blocks (control signals and continuous time signals)

according to the topology.

Control
Input

internal 
functionality

Continuous
Input

directly called
functions

Control
Output

Continuous
Output

e.g. Control Word e.g. Status Word

Functional Unit 

Figure 4:  Typified Interface of a
Functional Unit
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c)  At this stage, it is still possible to add functionality specific for this topology
in the programming language C.

Step 3: Build applications on top of the topology layer:
a)  Define the customer specific program behaviour by adding sequences to the

main state machine and providing firing events for transitions.
b)  Add customer specific features and program them in the function block

language.
In our case application development (Step 3) is not a pure customisation, which

is done by selecting an active set of components from an universal product by
customisation procedures [8]. We allow free programming of additionally features
if a customer pays for it.

Basic Software 
Layer

Common 
Layer

Topology 
Layer

LCI Topology other Topology Cyclo Topology

Applic. A Applic. B Applic. C
Applic. D

Applic. E

Application 
Layer Applic. F

software framework
for all variants

hardware specific software

Step 3

Step 2

Step 1

Figure 5:  Three-Tier Design Approach for Application Building

4.2 Gained Reuse Potential

The estimated ratio of software size for common software layer : topology layer :
application layer is 7 : 1 : 2. The small proportion for application layer software
contributes much to reducing engineering costs for a customer specific product.

Corresponding to the three steps in the design approach proposed above, there
are three levels of reuse:

Highest level of reuse: If a new customer specific product with a foreseen
topology has to be developed, an engineer at the profit center only has to run
through Step 3. He or she starts with the software created for the desired topology
and thereby reuses all code up to this layer (80 %).

Medium level of reuse: If a remarkable step in drive technology innovation is
reached, a new topology has to be designed on which applications can be built
again. Step 2 and Step 3 must be run through. All software on the common layer
can be reused (70 %).

Low level of reuse: If the control system hardware is replaced by a more
powerful one, modules of the common software layer might be ported to run
efficiently on the new processors. But the overall structure and framework of this
layer remains, as it was designed to be hardware independent. The effective reuse
is the framework (about 40 %).



www.manaraa.com

A Three-Tier Design Approach      31

5. Conclusion

The development of the three software layers (basic, common, and topology for
two topologies) including the framework for application building of drive control
systems took several person-years. From this project at ABB Industrie we gained
not only a profound understanding of the diversity of our drive applications, but
also much experience in developing a software framework covering a wide
spectrum of variations. Our experience widely corresponds to the statements
given in [2] about object-oriented frameworks, which was recently published.

With this approach of considering different types of product variations, namely
specific end customer demands, families of drive topologies, and portability on
new computer platforms, we were able to improve our reuse potential for this
control software substantially. Now, reuse is no longer limited to code, but
includes the software architecture and even domain knowledge.
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Abstract. ABB Power Generation’s family of gas turbines covers 
the power range of 35 to 270 MW with five basic turbine types, 
which vary in size, combustion technology and equipment. Each 
type comes in several variatons, which in turn can be customized by 
adding or removing options or by following customer requirements 
not covered by standard options. This situation imposes high 
flexibility requirements on the turbine control system software.  
The scheme presented in this paper was developed to meet these 
requirements and ease turbine control engineering. It is based on the 
ideas of object oriented programming, which has been known to be 
very well suited for this kind of problems in conventional software 
engineering for quite some time. The architecture which results 
from this approach not only eases reuse of standard solutions 
throughout the whole turbine family, the design guidelines based on 
the object oriented principles also improve stability of the designed 
code. The concepts presented are currently being implemented for 
the ABB reference plant product family control system. 

1. Introduction 

1.1 Turbine Control 

A turbine control system has three basic tasks: 
• Closed loop control: Controlling typical values like speed or temperatures, 

mostly by PI-control 
• Open loop control: binary control, concerned with sequence control of startup 

or shutdown procedures. Although called open loop, the binary loop is usually 
closed. 
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• Protection: The turbine state is continuously monitored and the turbine is 
deloaded or shut down (tripped) if any dangerous state is reached. 
The protection system is usually structured as a list of trip signals, which are 

continuously analyzed to be in the allowed ranges or states, whereas the control 
structures are more complicated. The closed loop controls comprises a hierarchy 
of control loops with various objectives and varying tasks, depending on the 
current state of the turbine (connected to grid, starting, stopping, etc.). The open 
loop controller mainly manages the startup and shutdown sequences by governing 
a number of sub-systems with their individual startup and shutdown sequences. 

1.2 Family Variation 

The gas turbine family is designed to cover the desired power range in both 50 and 
60 Hz. Each family member comes with a number of options, e.g. fuel selection or 
cooling system. In addition, customer requirements may result in further 
adaptations of the standard solution. Each of these variations and modifications 
has to be covered in the corresponding control software. However, developing a 
customized control system for each turbine is clearly no longer possible in the 
current market situation in the power business. 

The family variation therefore had to be analyzed for typical variations, for sub-
systems which are stable throughout the whole family, within one family type, or 
which are supplied in a limited set of well definied options. For each of these 
system variations, the optimal software solution has been available in previous 
projects. What kept the software from being easily implemented and adapted to 
other turbine configurations was the lack of an architecture which not only 
supported a modular structure of the software, but also eased the exchange of 
typical options and allowed the application of a consistent version management. 

2. Reuse 

The similarity of the turbine hardware (or hardware of sub-systems) over parts or 
the whole family is well suited for the idea of software reuse. This idea has been 
circulating in software developing companies for some time, but the non-technical 
problems (organisatorial or psychological) of this approach have left the concept 
in many companies in a rather obscure state (see [1]). When asked, many people 
do answer ‘we have it’, but a closer look mostly reveals that the concept is not 
widely supported in the organization. 

2.1 Current Control Structures 

If we look at the control structures which have been established over the years in a 
power plant, we already find a basically well structured design in the open loop 
controller (e.g. binary or sequence controller). The main sequencer is responsible 
of switching on and off various sub-systems, commonly referred to as function 
groups. Each function group then controls its associated devices. Function groups 
are usually the representation of a physical sub-system in the process. 
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A brief look at the variations in the turbine family makes the development of a 
strict reuse scheme quite obvious. In many cases, the process hardware of 
auxiliary systems are equal or only differ in device redundancy. However, a closer 
look at the multiplicity of current implementations confirms, that simple copy-
paste type of reuse is not easily possible, and that sub-systems have to be designed 
for reuse and can not simply be extracted from a previously implemented solution. 
However, the current engineering process is based on a ‘cloning’ technique (as 
described in [2]), which selects a previous project closest to the new plant, copies 
it, and adds the modifications. 

2.2 Requirements 

The analysis of the family structure and of common project requirements reveal 
the following levels of possible reuse: 
Function block level: Library of generic solutions (controllers, drive control, 

sequencer, etc.). Independent of their application. 
Drive group level: Simple automation solutions comprising a small 

number of redundant devices, including voting. 
System-level: Systems or subsystems which exist as stable 

implementations, i.e. are not changed per project, but 
which may be exchanged as standard options 

Family-level: Systems or subsystems which can be shared among part 
or the whole product family. 

The analysis showed quite clearly, that with increasing automation level, a 
common standard structure is more difficult to find. Although a gas turbine startup 
sequence always performs the same actions, such details as number of 
measurements to use as state transition conditions or details of device control 
differ greatly. 

If we analyze these possible levels of reuse, we can derive the following 
general requirements for our reuse supporting architecture: 
• It shall be possible to exchange predefined options. 
• It shall be possible to share a module among several (all) turbine types. 
• Project specific parts shall possibly be isolated from standard code. 
• The reuse scheme shall not only speed up project engineering, it shall also 

improve code quality. 

3. Object Orientation 

Despite the absence of object oriented design techniques in control system 
programming, the analysis of the requirements for software modules showed some 
parallels to requirements  set up for object oriented systems. Since tool support for 
object oriented implementations is still rare, the focus was not put on object 
oriented coding, but on using an object based methodology for the design. Special 
features of the programming tool currently in use were then used to relate this 
methodology to implementation guidelines. 
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3.1 Object Hierarchy Design 

The first task in any object oriented design, the identification of objects, is straight 
forward when designing a turbine control system: The objects can be 
distinguished on the plant floor: the pumps and valves have traditionally been 
regarded as functional sub-systems in power plant control (cf. function block level 
in Section 3.2). Object hierarchy does not need to stop at the drive level. In 
general, a whole plant can be regarded as one object, with its sub-systems and 
functions being interpreted as objects on the lover level. The current open loop 
control structure shows this quite clearly. If we regard the main sequencer as the 
control structure of the top level object (turbine), each of the function groups or 
sub-systems it controls can be modelled as objects as well. We will see below, that 
they can even be related in functionality to a common abstract class of 
controllable object. A closer look at function groups then shows the possibility of 
once again identifying functionality on a lover level which can again be packed 
into an object structure, which even relates to the same common object class. 

This hierarchical structure is achieved when only functionality and sub-systems 
which can clearly identified in corresponding process hardware are structured in 
terms of plant hierarchy. A very similar organization results, if options and 
variants are identified and grouped for easy, modular replacement. To benefit 
from the ease of engineering as well as from the functional clarity, functional 
decomposition was applied with special regard on optional or varying functions. 

3.2 Data Encapsulation 

One of the main properties in object oriented design is data encapsulation. If we 
compare conventional, object oriented programming languages to the way control 
systems are usually programmed in function chart, we have difficulties to 
distinguish data from functionality, since in a data flow representation data is not 
collected in variables, but can be regarded as flowing through a graph. The area 
where we do have a compareable situation where data can be retrieved and stored 
back are the I/O devices. Extending the idea, data encapsulation can be regarded 
as defining an object’s interface, e.g. a number of signals leaving an object. We 
will denote these objects as ‘services’ in the sections to come. 

These services can be classified in several different categories: 

State Modifying Services: 

Conventionally denoted as commands or orders, these services perform some 
action on the object’s internal state. By the object’s state we do not only mean 
some software internal structure, but also the state of the field devices controlled 
by the object (e.g. valve open or closed). 

Information Services: 

To consistently organize all information provided by an object, all data used by 
any entity outside the object is to be included as an information service. As we 
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will see later, the definition of information services is an essential step towards 
data abstraction.  

In addition to these services commonly used by other objects on the controller 
level, additional services are defined which ease the appication of an object: 

Administration Services: 

Commissioning and maintenance procedures are included in an object definition. 
These services are not available for automation structures, since they assume in-
depth knowledge of the plant when being operated, since commissioning 
procedures may require disabling or testing some safety equipment. 

Parameters: 

Plant specific data is defined as an object parameter. Valve characteristics or 
controller settings are parameter attributes of an object, which can also not be 
modified by process control. 

3.3 Inheritance 

One key feature of object oriented programming, and also the most difficult to 
implement in a non-object oriented environment is inheritance. However, the 
inheritance concept – to define an abstract superclass with a constant interface and 
subclasses whose function implementation varies – is very well suited for the 
implementation of exchangeable standard options. The approach taken is to define 
a common interface for all variants, which can then be regarded as the definition 
of the abstract superclass of these options. It can so be guaranteed, that all other 
modules subscribing to services of that module only rely on data provided by all 
variants through the common interface, therefore reducing the influence of a 
modification in one module on other, unrelated modules.  

A subclass can then fulfill the requirements of the interface according to the 
needs of the process option it represents. Please note, that in order to keep object 
interchangeability, a subclass instantiating the abstract interface definition is 
required to provide the services of the class. If it does require additional 
information for its internal operations, this information does not need to be wired 
through the interface, since it can not be regarded as one of the object’s services. 
Subscribing to services exported by other objects does not limit interchangeability. 
We did also limit the object’s possibility to access other object’s services to 
information services. Using any other services would not limit interchangeability, 
but it would increase the functional interdependence of the objects. State 
modification services should only be accessed by the superordinate automation 
structure, or superordinate object only. 

3.4 Abstraction 

Current implementation of control software is still very much focussed on single 
signals. Whenever some information is required by a functional entity, it is 
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calculated from field measurements or state signals. This greatly reduces 
readability of the code and minimizes interchangeability. 

Consider the situation, where one option is providing pressure by one pump, 
the other option is to install two redundant pumps. If another object wants to 
check, whether the pressure is indeed provided (assuming there is no pressure 
measurement available), it has to check the status of one pump in the first case, or 
the status of pump 1 OR the status of pump 2 in the second case. If the pressure 
building sub-system provides a service which returns the information ‘sub-system 
pressurized’ and does the signal voting itself, an object which requires the 
pressure information does not need to know how many pumps are available. 

Informatin condensation at this stage reduces the number of signals exchanged 
between two objects, but not the amount of information, since the information 
proviced by the signals is more meaningful. 

3.5 Use Cases 

The individual object’s services are found by defining use cases. Following a top-
down approach, the use cases for a plant level object (e.g. a turbine) are its 
interfaces for manual operation (i.e. the machine states which can be selected by 
an operator). Recursively, the use cases for all sub-objects are then defined by the 
requirements of the superordinate automation structure. Most sub-systems have to 
be started or activated in the sequence of the start of their ‘owning’ object, or they 
can be commanded to switch to another state by that same automation authority. 

The information services of an object are defined by collecting all requests for 
data from that object by any other object. That number of requests may be 
arbitrarily large. Since the number of required services of an object renders its 
reuse increasingly difficult, a reduction of services it to be attempted. As we have 
seen before, requests of conventionally designed modules will mostly directly 
access some internal state of the object to decide themselves on the required 
information. Not all service clients do this in the same way. It is therefore mostly 
possible to detect the information all these subscribers are interested in, to then 
gather that information within the object, and defining a service which provides 
the desired condensed information. 

3.6 Implementation and Design Rules 

As mentioned before, these object definitions finaly need to be implemented using 
conventional function block programming languages without any object support. 
Although some implementation rules, naming and programming conventions were 
introduced to enforce the object properties on the control system level, additional 
rules and guidelines are introduced to keep the object oriented paradigm during 
the design phase. Handling of object internal states, strict use of object services for 
information retrieval, and data abstraction guidelines are required to fully benefit 
from the advantages of the approach. 

Furthermore, some properties of the conventional tools in use are beneficial for 
an object approach. The capability of assembling independent source files just 
before downloading onto the controllers is used to implement what can in a broad 
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sense be regarded as 'late binding'. Some of the mechanisms implemented rely on 
the tool's ability to automatically connect signals on a name reference basis. 

Additional tool support to ease the application of object orientation is currently 
being investigated. However, we consider the availability of object oriented 
features in future control systems programming languages to be highly probable 
and intend to rely on commercial tools in the foreseeable future. 

4. Conclusion 

Designing for reuse, and therefore providing a level of standardization requires 
extra discipline from all participants. The concepts presented in this paper are 
currently being implemented designing software for ABB Power Generation’s 
reference plant family. 

Designed to improve reuse and option interchangeability, the object oriented 
principles defined to achieve that have the appreciated side effect, that they do not 
only speed up engineering, but also improve code quality. This result is generally 
expected when applying reuse, but object methodology also improves the quality 
of the automation concepts by more clearly identifying data owners and 
responsibles, i.e. by setting up a well structured object hierarchy. 

In addition, the side effects when exchanging modules were reduced to a great 
extent when compared with modules not designed for reuse. It was these effects 
which made error tracking very difficult and time consuming, especially when 
they occurred on site. 

5. References 

[1] Jacobson, I, Griss, M, and Jonsson, P: Making the Reuse Business Work, IEEE 
Computer, October 1997, pp. 36 

[2] Dikel, D, et. al: Applying Software Product-Line Architecture, IEEE Computer, August 
1997, pp.49 



www.manaraa.com

Frank v. d. Linden (Ed.): ARES '98, LNCS 1429, pp. 39-48, 1998.
 Springer-Verlag Berlin Heidelberg 1998

Experiences with the Evolution of an Application
Family Architecture

Andreas Rösel

ABB Informatics, Advanced Software Center
Mannheim, Germany
roesel@decrc.abb.de

Abstract: The evolution of the Semantic Graphics Framework from
prototype to a base framework for more than ten industrial
applications is reflected upon. The framework approach is regarded
as a success, over a period of several years, solutions for various
business units could be implemented and significant commercial
impact has been achieved. The evolution of the framework is
considered from the perspectives architecture, documentation and
organizational issues. We summarize our experience with
controlling the evolution of an object oriented framework in form of
propositions.
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1. Introduction

In this paper we present some experiences gained in arriving at a framework
architecture and evolving it through its application in various projects over a
period of years.

The paper is organized as follows: Chapter 1 outlines the history of the ABB
Semantic Graphics Framework (SGF). Chapter 2 is concerned with the
architecture and trade-off made in its evolution. In chapter 3 we focus on the
documentation aspects. Chapter 4 briefly looks at organizational issues. Chapter 5
and 6 summarize our conclusions.

1.1 Semantic Graphics at ABB

The SGF framework is based on a portable commercial class library (providing
graphical user interface basics etc.) and supports the development of graphical
engineering applications. The major components of the SGF are a configurable
graphical editor and a set of classes designed to be refined with specific
application know-how. The need for a framework in this domain arose from the
painful realization that standard offerings of graphical tools did not (in 1992) and
still do not (in 1997) cover all the requirements for specialized engineering. The
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Figure 1: SGF application examples

choice was either to make significant efforts for adapting standard tools or
developing once-off solutions. There had been negative experiences with both.
Adaptation often took longer than expected and was not able to meet all initial
and especially later emerging requirements. Once-off solutions took a long time to
develop, were of high risk and had a high price.

1.2 History

The SGF emerged as the common core of two engineering tool prototypes that
were completed at the ABB Corporate Research Center at Heidelberg, Germany,
in late 1992 using Smalltalk. In 1993 the first C++ version of the SGF was
completed in conjunction with two projects.

The first SGF applications were engineering tools, Geta/View and
Kreisl/Graph, providing graphical shells around existing FORTRAN programs.
Geta/View, used at ABB Kraftwerke, Baden, Switzerland requires a complex
input data file that contains the topology, as well as engineering data of
components modeling the air flow through a gas turbine. It allows for drawing
schematics, checking consistency and then generates the input file. Kreisl/Graph
is used by ABB Turbinen Nürnberg for calculating steam cycle processes. Again,
a specific graphical editor allows for drawing steam cycles.

The largest application built on the SGF is the Integrated Data Engineering
System (IDES). IDES allows to configure complex power distribution networks
with transmission lines,
stations, substations and
their internals. While
the network is entered
with the graphical
editor, the topology
information is derived,
verified and together
with data from
configuration dialogues
it is entered into a
database.

2. Concepts and Architecture

When the SGF was designed many of the applications which were later built using
this framework could not be envisaged. The fact that two different applications
provided guidance in the development was most helpful.

Architectural choices were considered in terms of how they help to implement
increased reuse and if they satisfy basic needs for graphical engineering. That is,
the architecture would suffice to cover the essential needs of the applications
being built at this time. For flexibility the approach was to provide hooks for
customization as they were foreseeable. Extensions due to possibly emerging
future requirements were not built in. Rather the approach was to trust that
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Figure 3: Excerpt from the instanciation of the SGF for a particular application

essential objects and services, containing as little specifics as possible, will be
useful (and customizable) for other applications in the same domain.

The general approach taken was to build a light-weight framework that is
customizable in a layered fashion. The above figure illustrates how the SGF is
focusing on its domain. The shading of the SGF layer indicates that with
increasing maturity of commercial offerings a major part of this layers
functionality will be able to be bought in. The specific domain of a company
provides most interesting opportunities for framework benefits. In Figure 2 this is
shown by a separate layer for the domain of network control.

2.1 General Concepts

One of the general concepts is support for graphical hierarchies. For example:
detail levels may be represented as sub-drawings in separate editors. Connectivity
between components of higher and lower levels of the graphical hierarchy is kept
consistent. Another general concept is the Coordinator-Aspect-View triple. The
concept of coordinated aspects (a variation of the Model View Controller
paradigm) supports systematically partitioning  application complexity. Each
application object can be represented in the framework by a coordinator which is
responsible for consistency between the graphical representation (graphic aspect),
the engineering data (data aspect), textual information and other aspects, such as
interface representations. This is illustrated in the following figure.



www.manaraa.com

42      Andreas Rösel

Customization
layer

Framework
layer

Configuration

black-box view

Tailoring

white-box view

modify through configuration
interface

predefined options (objects),
switching mechanisms, ...

changes and extensions to
framework internals

redefinition, polymorphic
substitution, ...

FW-Effort

Customization options

Customization-Effort
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A (customizable) mechanism for updating and change propagation is also
provided. These general concepts are a core part of the SGF and have been stable
over the years. The Coordinator-Aspect concept was found to be useful for
several later emerging needs.

2.2 Graphical editor

In addition to typical functionality (rubber banding, zooming, standard and
reduced printing) the SGF graphic editor uses the Coordinator-Aspect concept to
provide semantic copy and paste, i.e. not only graphics but also their semantics
(e.g. associated data etc.) are copied. This is vital for engineering applications
where hierarchies of components with various associated information aspects
need to be manipulated. The graphical editor also allows for customizing object
behavior. For example, the type of connections accepted, consistency checks,
restrictions on selection and moving can be defined for individual and groups of
components. - The graphical editor is also an essential concept of the SGF. For
each application one or more graphical editors are customized.

2.3 Synchronized graphical views

Several graphical views (editors or read-only views) can be open at the same time
(typically with different zoom factors or scrolling offsets). All views are kept up
to date. - One instantiation of this concept which became popular in applications
of the SGF is a small sub-view showing an overview of the complete world
picture of the respective editor.

2.4 Object persistence

Entire systems (i.e. graphics and their semantics) can be written to disk. This
mechanism takes a version number to facilitate coping with changes of object
definitions over time. - The need for a version number was soon realized. This
allows application builders (and SGF maintainers) to read in objects stored by a
previous version of the application (using getFrom) and check (if version <
currentVersion) whether update activities need to be initiated.

2.5 Customizability

We use the terms
configuration and
tailoring to distinguish
between activities of
black-box customization
and white-box
customization. The
differences in effort and
competence require-
ments are illustrated in
the figure below.
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The customizability of the SGF is based on the mechanisms of object
technology (sub-classing, etc.). Specific extensions are designed for by providing
hooks (redefinable base methods) and containers for specialized functionality
(custom classes, clusters). These are white-box customization mechanisms in the
framework. Such tailoring can only be done by people with a good understanding
of the internals of the framework. Initially tailoring was the only way to customize
the SGF.

The symbol editor coming with the SGF is an example of black-box
customization (i.e. the user does not have to know about the internals to be able to
define customized behavior). It also exemplifies the balance between efforts at the
framework layer versus effort at the application layer.

3. Documentation

A framework encapsulates knowledge about a specific area of application and
makes available components and templates with which complete applications can
be implemented predominantly through combination, generation and
specialization. The benefits of frameworks can only be realized on a larger scale
when people other then the original designers can understand how to use and
adapt the framework. In our experience the documentation of a framework will
very much determine its usability and spread of use.

Documentation of the SGF was to address several audiences: Potential
customers: communicate the features and capabilities of the framework and build
up confidence for end customers. Application builders: communicate the concepts
of the framework and the recipes of how to instanciate relevant aspects for an
application to new developers. Framework designers / maintainers: communicate
the concepts and implementation of the framework to enable extensions and
improvements. Overall it was realized that it was necessary to move towards a
product quality of documentation.

3.1 Source code based documentation

The initial documentation at the source code level was supported by a tool to
extract comments and produce a class level document [4]. The approach has
several advantages: it is simple, it is based on a single source of comments and the
documentation is at a place where it can be modified even if  small changes are.
We recognized several disadvantages including the fact that incremental update of
framework documentation was not supported and that the document structure does
not reflect the relationships between classes.

A next step was to investigate tool support for design and design level
documentation. Several tools like ParadigmPlus were tried and evaluated.
Together/C++ [5] was adopted since it was in 1995 the only tool evaluated which
was able to effectively support full cycle documentation.
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3.2 Evolution of the SGF Concept book

Initially core concepts of the SGF were described on a few pages. As the size of
the framework and the number of readers grew this was found to be insufficient.
We decided that it would be valuable to not only improve the concept
documentation, but to try and identify a suitable template structure for concept
documentation of frameworks in general.

To identify an appropriate structure the requirements of readers and writers of
the documentation were collated and categorized. The following documentation
techniques for meeting the requirements  were applied: uniform structuring,
referencing of standard terminology, such as design patterns and utilization of
tools at various levels of documentation.

In the following we describe the generic structure for documentation of
framework concepts. A concept chapter is subdivided into the following
paragraphs:
• NAME OF THE CONCEPT ( = title of the concept chapter)
• INTENT. Short description of the purpose of the concept and the problems to

be tackled.
• INTERFACE. A listing of the essential methods / classes made available by

the interface (and the implementation) of the presented concept.
• DESIGN. How does the framework support the concept? Which classes

and/or objects play a role in this concept? What are their responsibilities and
how do they work together? Which behavior is made available through this
framework as a standard procedure?

• RELATED DESIGN PATTERNS and CONCEPTS. Design Patterns and
other concepts which are related to the concept at hand.

• RELATED CLASSES and METHOD. Listing of the related classes and
methods which implement/ utilize/ or are utilized by this concept.

• SUNDRY. The following sub-chapters discuss continuing topics and are
optional; i.e.: they provide a place for capturing open points and documenting
potential for improvements.

• DISCUSSION (optional). Detailed discussion of specific aspects of the
presented concept, in particular the documentation of the design decisions.

• REORGANIZATION (optional) How can the current design and the
implementation of this concept be better organized with respect to improved
reusability. In the area of design, these aspects could be considered:
adaptability, flexibility, black- box vs. white-box framework. Aspects such as:
readability, consistency, simplicity  are relevant to the area of implementation.
 
 The idea for the presented structure for the description of concepts has been

borrowed from the uniform description of design patterns in [2]. In accordance
with our requirements however, a different structure emerged.
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 4. Organizational Issues

 Developing the SGF and developing applications with this framework has brought
up several organizational issues. Since the SGF was the first framework being
developed in the organization there was no previous experience or culture for this
type of approach

 The organization of the SGF was started in an Ad Hoc Model for Reuse and
has evolved into an Expert Services Model as described in [3]. We have
recognized that the SGF should be treated more like a product, but several
questions have to be addressed before the organizational setting has reached the
level of a Product Center Model.

 4.1 Ownership issues

 Who owns a framework used across domains? What about maintenance and
warrantees? How are financial investments shared and benefits distributed?

 The SGF can be applied in the broad domain of Graphical Engineering and is
therefor of interest to a number of business units within ABB. Neither of these
businesses has a primary focus on building or maintaining software of this generic
nature. The internal information technology unit did not have appropriate
resources and the transfer to a (small) external software house was regarded as too
risky. Thus, the responsibility stayed with Corporate Research. There is a
possibility that several of this type of software activities will lead to a spin-off
organization in the near future.

 4.2 People issues

 How to built up appropriate expertise? Use external ones, acquire, re-train, use a
combination? What to do with staff who can not make the step change?

 If good designers are a precious commodity - good framework designers are
even more so. That a number of good people were available to evolve the SGF
was more by chance than organization. The transfer to others was done within the
context of projects in small teams.

 From the SGF and other framework projects it became apparent that the quality
of the people involved is particularly critical, since the effects of design decisions
are multiplied to all projects building on the framework. Therefore training is
regarded as extremely
important.

 4.3 Process responsibilities

 How to synchronize framework
upgrades with application
development? How to recognize
and include additions of
application developers which
have generic value?
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 The two distinct processes associated with frameworks are illustrated below.
The framework development process is executed at first very much in iteration
with application development. Organizational responsibilities and the interactions
have to be assigned for the two type of processes to work effectively.

 One key for succeeding in this is identified by the box ‘usage’ above. The
organization must be ready to use the frequent baselines of the development and
provide early feedback. One important aspect is the decision which additional
features are to be included in the framework. For the SGF the pragmatic approach
was to leave as much responsibility as possible with the application developer and
provide advice from the framework developer side.

 5. Lessons Learned

 In this chapter we summarize our experience in terms of several propositions.
They express findings that are likely to be also applicable to other organizations
evolving frameworks.

 THESIS 1: No framework success without application success.

 What distinguishes a successful object oriented Framework  from others? In our
experience the primary distinguisher is the number of applications that have been
successfully realized using the framework. Therefor the driving force must be the
applications. The first two or three applications provide the essential
requirements. While the framework architect will keep openness and extendibility
for future applications in mind we found it vital to accept the reality that there will
be no future applications unless these first few are 'out there' within the window of
opportunity. Some chances for better design decisions, better documentation and
so on have been sacrificed in this pragmatic view.

 THESIS 2: No framework without a customizable architecture.

 A customizable architecture is the key to fulfilling the demands of the variants
required by applications in the framework domain. Designer know-how and
modeling techniques are vital, but in our experience they must be consciously
focused on identifying key concepts which are general and ‘simple’ enough to
survive many years of framework usage. Design patterns can help to address the
variable ‘hot spots’ with flexible designs that are maintainable. Effort spent for
customization should be consciously evaluated to determine if it is best spent in
configuration or tailoring, at the framework layer or at the application layer.

 THESIS 3: OO principles are more important than language choices.

 Whether the framework is implemented in Java, Smalltalk, C++ or some other
language - without a sound foundation on object oriented principles it will not be
worth being called a framework. As two adoptions which provided a good pay-
back we experienced 'design by contract' and use of design patterns.
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 THESIS 4: The law of increasing entropy applies to Framework evolution.

 This law of the universe tells us that a framework will deteriorate as it is
developed and maintained unless conscious efforts are expended to counteract
this. Metrics support for the framework designer as described in [1] are a way to
provide objective checks where such efforts are most needed.

 
 THESIS 5: No framework acceptance without documentation.

 The influence of the documentation of a framework on its success should not be
underestimated. The benefits of systematic documentation techniques will already
be felt during the design of the framework. Framework developers will benefit as
much as application developers. Tool support for reducing the effort for tedious
update tasks are available.

 THESIS 6: No framework without organizational changes

 It is our experience that developing and utilizing an object oriented framework
successfully - requires organizational changes. While here too an iterative
approach with small changes may be useful it is our recommendation to not leave
such developments to chance. Definition of the organizational responsibilities and
interaction processes are a prerequisite for creating a ‘win-win’ situation for
framework suppliers and framework users. The goal should be to implement a
Product Center Model [3] for utilizing the potential of good framework
developments.

 THESIS 7: No framework benefit without commitment and investment.

 We found a framework
• takes longer to built than traditional libraries as it contains additional design

information
• takes longer to learn than traditional libraries as more complex interfaces must

be understood
• requires more careful design than individual programs
• requires better documentation and support than individual programs
• changes the software life cycle as efforts are shifted for example from

designing individual systems to deriving systems from or integrating systems
with the framework design.

• changes to a framework may require rework in existing derivations
In our experience the cost of a framework may be 50% of the total cost of the

first three applications. Once three or more applications are implemented and
being used the framework will most likely have paid for itself. To reach this pay-
off level significant commitment and investment are required.
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6. Summary and Conclusions

The Semantic Graphics Framework evolved over a period of years from a
prototype to a framework for more than ten industrial applications. The approach
resulted in tangible benefits and is regarded as a success. The lessons learned in
the process are to a large extend old lessons in a new form.

It is common knowledge that aspects like architecture, documentation, and
organization are important for producing successful software. One challenge is to
apply the principles of these areas to the framework approach and refine
appropriate actions in accordance with the emerging needs. On the one hand,
frameworks are the same (a complex software system, a product, etc.), on the
other hand, they are different. New ways of abstracting complexity are available,
new skills are required, faster development cycles are possible and new types of
metrics are necessary.

The experiences gathered during evolution of the SGF were found particularly
valuable because of the mix of activities possible through our role of being
responsible for technology transfer rather than pure product development. This
helped us to stick with a more systematic approach not dominated by deadlines
alone, yet directly driven by practical applications in various industrial domains.
Of course, many aspects of the development could be improved in hindsight and
reporting the experiences is helping to pinpoint places for improvements.
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1. Main Issues

The main issues identified in the area and which were selected for discussion are
listed below:
• Basic models for product line descriptions (PLDs)

� what are the first class description components?
� how is `form' described?
� how is the rationale for the architectural elements/decisions described?
� is the architectural instance description (AID) language different from

PLD language?
• Generic Descriptions

� when and how do you move from the business domain to the solution
domain?

� what are the language structures to describe
− shared architectural elements
− product specific architectural elements

� how are the architectural instance descriptions (AIDs) instantiated
or derived from the PLDs

• Use of PLDs
� what forms of analysis are supported

− behavioural
− non-functional

� how well does the PLD support project planing for architecture based
software development
− at the PLD level
− at the AID level

• Evolution of PLDs/AIDs
� how is the relationship between the PLD and AIDs managed?
� how do you maintain consistency between

− the evolved PLD and the derived AIDs
− the PLD and the evolved AIDs
− evolved PLD and evolved AIDs

mailto:dep@research.bell-labs.com
mailto://jk@doc.ic.ac.uk/
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� how are the dependencies between architectural drivers and PLD
managed (ie, how is the rationale evolved and maintained)

2. Discussion

Each of the papers in this session contributes to this area and addresses some of
the above issues.

The paper by Peter van de Hamer et al at Philips describes  their model which
addresses complexity and product families through hierarchy and a means for
describing diversity. The need to ensure compatibility between variants of the
architecture could be addressed through the use of architectural constraints.

The Koala component model by Rob van Ommering of Philips provides insight
into the use of components and modules for multi-system decomposition. One of
the particularly interesting features of the model is the use of diversity interfaces
as the means of controlling the specialisation of PLDs to AIDs. These exploit the
binding mechanisms to decide where and when diversity parameters are set.

In the work of Nat Pryce and Steve Crane, support is provided for selectable,
diverse interaction protocols. This is an integration of the Darwin ADL, Midas
language for interaction definition and Regent platform for distributed computing.
Bindings are elaborated into abstract interfaces and interaction protocols.

Jan Bosch raised issues related to problems of composing architectures -
essentially the transfer of an architecture from use in one domain to another.

As a result of discussion, it was generally agreed that there was no need for
different languages for the PLD and AID, and that the same architectural
description should support both. However, there was some indication that an
architecture description language (ADL) might be appropriate for only a
particular application domain, and that different domains might require different
languages.  Finally, there was some discussion as to how ADLs, PLDs and AIDs
should integrate with design notations such as the Unified Modelling Languges
(UML). This was left as an open question



www.manaraa.com

Generic Architecture Descriptions

for Product Lines

Dewayne E. Perry

Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA

dep@research.bell-labs.com, www.bell-labs/com/usr/dep/

1 Introduction

Two of the fundamental needs in de�ning an architecture for a product line are

{ to be able to generalize or abstract from the individual products to capture

the important aspects of the product line and

{ to be able to instantiate an individual product architecture from the product

line architecture.

In other words, having a product line implies having a generic architecture from

which the individual product architectures can be derived in some manner.

There are a number of di�erent ways in which one might go about de�ning the

product line architecture so that this desired level of genericity can be achieved.

Five possible ways of doing this are

{ use a software architecture style,

{ use an under{constrained architecture description,

{ de�ne a variance{free architecture,

{ use parametric descriptions with varying binding times, and

{ use a service oriented description for selective provisioning.

In the end, I think you will need all of these for a systematic and complete generic

product line architecture. I will discuss each of these in turn and delineate their

strengths and weaknesses.

2 A Style as a Generic Architecture

There is a certain intuitive appeal in using a product line speci�c architectural

style as the generic architecture for a product line. It would capture the essential

characteristics of the product line while ignoring the variations and leave them

to be supplied as needed in the actual product architecture. These essential

characteristics would encompass the necessary components that each instance

must have, the basic minimum interactions that each instance must have and

the basic constraints on these components and interactions.

The utility of a style description is that it represents the minimalist approach

to software architecture in general and product line architecture in speci�c. Only

the critical aspects of the product line need to be considered in the architectural

Frank v. d. Linden (Ed.): ARES ’98,  LNCS 1429, pp. 51-56, 1998. 
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speci�cation. One primary advantage is that new products can be added to

the line with ease as long as they conform to the basic product line stylistic

constraints. This provides a wide degree of latitude in the the various products

and what they provide relative to the core essence of the product line.

One of the negative side e�ects of this approach is the amount of work needed

to re�ne the product line style into a particular product architecture. With

the intent of a style as capturing only the essential architectural aspects of the

product line, those aspects must be extended and added to in order to create

in individual product architecture. As such the product architecture must be

analyzed for conformity to the product line architecture.

As a result of this lack of completeness other aspects of architectural based

development su�er as well. For example, analysis of the product line architecture

will, of necessity, be less comprehensive. Project planning will be similarly less

comprehensive at the product line level and the majority of planning work will

be delayed until after a complete product architecture has been extended from

the core style.

Further care must be taken in evolving the product line's architectural style

so as not to invalidate existing product architectures. With each change to the

product line style, the individually derived product architectures will have to be

re{analyzed to ensure that the product architectures remain conforming to the

style.

On the whole there are better uses of styles for product line architectures

than de�ning the generic product line architecture itself. For example, one could

de�ne a set of styles de�ning such things as initialization, fault recovery, etc that

all the various components in the architecture must adhere to.

3 An Under{Constrained Architecture as a Generic

Architecture

The di�erence between an architectural style and an under{constrained archi-

tecture is a subtle one. The di�erence is fundamentally the di�erence in the com-

pleteness of the architectural description. A style is meant to focus on certainly

critical features and isolate them from non{essential and non{stylistic features.

There is no requirement for completeness of an architectural description in any

way.

With an under{constrained architecture the idea is to capture the product

line as completely as possible but in such a way that the variations are not ruled

out by overly constraining the architecture. The variance is within the con�nes of

the architectural constraints, not within the aspects that have not been de�ned.

This approach goes a long way towards solving the weaknesses of the stylistic

approach in terms of analysis and planning at the product line level. Further it is

much easier to create a product architecture from the product line architecture.

However, it is still not a simple matter to produce the product architecture from

the product line architecture (it is still primarily a creative process as with styles
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but one which has marrower bounds) and one will have to analyze the product

architecture to ensure its conformance to the product line constraints.

This approach seems to be an appropriate one to use if the primary di�erence

among the products is something like performance and in which the function-

ality is primarily the same. On the negative side, extending the product line is

a signi�cantly more constraining task. Unless you evolve the product line ar-

chitecture, the new products must be de�nable within the current constraints.

In evolving the under{constrained product line architecture, care must be taken

in its expansion not to inadvertently nullify current products as constituents of

the line through the addition of further components or constraints. Constraint

relaxation, of course, does not cause such a problem.

4 A Variance{Free Architecture as a Generic

Architecture

Again the di�erences between this and the preceding ones are subtle. Here the

architecture is not under{constrained. It is instead a fully described architecture

but one in which the variances among the products are not considered to archi-

tecturally important { that is, the product di�erences are an issue of design and

implementation, not an issue of architecture.

This approach is useful when your product line spans a signi�cant range of

options with respect to a particular aspect. One such example is that of whether

the system is centralized or distributed. If the products range from simple cen-

tralized systems through to complex multi{processor and distributed processor

systems, then this characteristic of the system might well be one that you want

to bury in the infrastructure and not have as an important architectural issue.

In this case, you might want to have a distribution independent architecture.

Distribution then becomes an implementation or even a administrative issue,

but not an architectural issue.

What is interesting in this case is that there is a signi�cant implication for

the implementation to support this kind of variance independence. To make the

architecture independent of issues of distribution implies a class of architectural

components which will support that independence.

Another example might be platform independence. Here again, there is an

implication about what the structure of part of the architecture must be in order

to bury the actual platform speci�c aspects in the design and implementation

rather than have them visible at the architectural level.

There is a signi�cant appeal in this approach. Analysis and planning can be

done at the product line architecture level. If the right product characteristics

are made independent of the architecture, then new products can be derived

from the product line architecture with relative ease merely by providing the

appropriate implementation speci�c components in the design and coding phase

in such a way that they conform to the product line architecture. The individ-

ual product architecture is the product line architecture; there is no derivation
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involved. Evolution of the product line architecture implies evolution of the

product architectures.

Because of the identity of the product and product lines architectures, issues

of analysis and planning at the product line level apply to the product level.

The downside of this approach is that it may not be possible to isolate all the

variations in this way. Certain properties such as distribution, fault{tolerance,

etc may be amenable to this, but di�ering functionality may not be.

Another negative aspect is the standard speci�cation problem of talking

about what is not there.

5 A Parametric Architecture as a Generic Architecture

A standard approach for generalizing is that of parametric abstraction. The

parameterized component is then applicable across a wide range of arguments (in

programming languages de�ned typically by types). The limits of applicability

depend on the constraints that are checked on those arguments. That partly

depends on the type system and what is allowed as a �rst class parameter types.

For example, in Ada generics, the range of types usable as parameters is larger

than for functions and procedures. In macro languages there are typically no

constraints at all. But then there is no guaranteed substitution safety either.

The utility of this approach is the same as for packages and operations: the

architecture speci�cation de�nes a family of possible instantiations and for which

the properties of the product line can be ensured for the various instantiations.

The variations required for each possible product in the line are well{de�ned

and known. Moreover, the instantiation of a speci�c product architecture is a

well{understood technology and the instance can be derived automatically from

the argumented product line description.

Here again, analysis and planning are doable at the product line rather than

the product level.

Evolution of the parameters may seriously a�ect individual product archi-

tectures. If the evolution is limited to broading the types of the parameters,

or perhaps upward{compatibly extending the parameters, then the individual

product architectures should remain valid.

There are two limiting factors. First the kinds of the parameters allowed may

seriously a�ect how well the generic architecture serves to cover the necessary

products. If the kinds of �rst class objects are too limited, then one may not have

su�cient descriptive power to satisfactorily describe the product line. Second is

the question of whether parameterization covers all the kinds of variation that

one might need to have among the products in a product line. We have seen

examples above that suggest that parametric approaches are not su�cient in

and of themselves.
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6 A Service Oriented Architecture as a Generic

Architecture

One of the typical kinds of problems found in developing such large and com-

plex systems such as telephone switches is the need to provision the various

products with di�erent features. Provisioning these systems is not the kind of

thing that can be done with parametric or variation independent approaches.

One can always of course do it with either styles or under{constrained descrip-

tions, but that does not help much if one wants these provisioned features to be

architectural features.

Thus an approach to describing a product line architecture is one in which

the various architectural services that may be provisioned are de�ned as part

of the architecture and are then selected in an instantiation process to de�ne a

particular product. One advantage of this approach is that the possibilities are

explicit in a more tangible way than in a parametric approach. Moreover, if done

properly, the architectural dependencies of these services are also made explicit

and the implications of choices are thus more explicit.

As with the parametric approach, instantiation is accomplished with well{

understood technology. Analysis and planning both can be done relative to the

product line description with the added advantage that the planning of a speci�c

product can be derived from the product line planning itself via the selection

mechanism of provisioning.

As long as the evolution of the product line architecture is done via the ad-

dition of new services, existing product architectures will remain valid instances

of the new product line architecture.

While this goes a long way towards a useful approach for provisioned prod-

ucts, it is likely to be insu�cient in itself for a complete product line speci�cation.

7 Putting The Pieces Together

I think it is clear at this point that a comprehensive approach to de�ning a

generic architecture for a product line requires all of these di�erent ways of

addressing various product line issues.

Styles are certainly needed for aspects of the product line that are orthogonal

to the speci�c component structure. For example, one may want to de�ne a style

for initialization or fault handling that must be satis�ed by all the components

in a product line to ensure appropriate cross{product use.

Under{constrained descriptions always provide a wider degree of exibility

than over{constrained ones. Clearly some aspects of a product line will be best

served by this approach where large degrees of design and implementation free-

dom are useful to respond to such things as changes in technology.

The variation{independent architecture is certainly needed where you want

to delay such considerations as platform or distribution until build time or even

execution time.
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Parametric and provisioning approaches are again obviously useful for various

kinds of generic descriptions and provide the most direct means of deriving their

product architecture from the product line architectures.

8 Summary

I have considered a variety of useful ways of `genericizing' architectural descrip-

tions (or prescriptions). I claim that a generic architecture is a fundamental

requirement for a product line and that each of these approaches is needed as a

means of de�ning some important elements in such a generic architecture.
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Abstract. Distributed programming environments commonly
restrict programmers to one form of intercomponent interaction.
This forces programmers to emulate other interaction styles in
terms of the dominant paradigm, obscuring their intent and
resulting in a loss of clarity. Starting from a clear model of
interaction between program components, this paper attempts to
restore this missing clarity of intent. It achieves this by proposing a
language tailored to the description of new and existing interaction
styles that separates the specification of intercomponent interaction
from the programming interface visible internally to the
component.

1 Introduction

Distributed programming environments usually restrict programmers to a single
form of interaction between system components. Remote Procedure Call [BN84]
and its object-oriented descendents [OMG95,Rog97] are popular because they
generalise the familiar centralised intercomponent interaction, provided by the
programming language, into one between address spaces. However, distributed
programs are quite unlike centralised programs. In this paper, we concentrate on
one difference: concurrency. Since it is constrained to a single address space, a
centralised program typically possesses a single thread of control. When
concurrent, its threads communicate using shared data and use monitors or
semaphores for synchronisation and mutual exclusion.

A distributed program, on the other hand, is always multi-threaded. When the
motivation for distribution is the exploitation of parallelism, RPC imposes "too
much policy by enforcing an explicit two-way synchronisation on every
communication" [FKT94]. Middleware designed for the development of efficient
parallel programs declines RPC in favour of asynchronous message passing
[MPIF93].
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If the middleware does not support more than one interaction style,
programmers are forced to implement the required styles in terms of the dominant
paradigm. While this is possible [LN79], it is often error-prone and obscures the
programmer's intent, impeding clarity.

2 Component Interaction

Before an interaction between two components can occur, their interfaces must be
bound together. This binding action is often specified in an architecture-
description language

2

. This section briefly describes our model of component and
binding semantics.  Salient features are illustrated with examples using the
Darwin architecture-description language [MDEK95]. Although Darwin lends a
brevity and clarity to architectural description, the core ideas are applicable in
general, even to implicitly-configured systems.

2.1 The Component Model

A component is a unit of distributed program structure that encapsulates its
implementation behind a strict interface comprised of services provided by the
component to other components in the system and services required by the
component and implemented by other components. The explicit declaration of a
component's requirements increases component reuse by decoupling components
from their operating environment.

A program is constructed through composition: components are instantiated
and services required by each component are bound to those provided by other
components in the system. Once two components are bound, they can interact
through the communication endpoints at each end of the binding. In addition to
directionality, a service provision or requirement also specifies a type defining the
semantics of the interaction and increasing clarity by expressing the component
programmer's intent.

Structural complexity is managed through hierarchical composition: composite
components are defined in terms of other components. While algorithmic
components are always found at the leaves of the composition tree, composites
may partially or completely expose the interfaces of their contained instances,
thereby providing structural transparency: whether a component is primitive or
composite is encapsulated within the component. Compositions can be specified
using an architecture description language, such as Darwin. Architecture
definition languages enforce a strict separation between the algorithmic and
structural concerns of the system and aid programmers by generating the code to
instantiate configurations.

A feature of Darwin is the correspondence between its graphical and textual
notations. While the textual notation is richer, supporting conditionals and

                                                          
2
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iterations, the graphical form is a convenient shorthand for a program's instance
structure for a particular parameterisation.

Example: Mobile Telephony

A GSM telephone network [GSM92] is composed of a number of mobile
switching centres  (msc) each responsible for providing connectivity and billing
services in a particular domain. The structure of an msc is described by the
following Darwin code and depicted in Figure 1. When a mobile phone is
created, it announces itself on the mobile interface, the switch  creates a "home
location record" for it and instantiates a pop , the phone's point-of-presence in the
network. Then switch  connects the mobile into the network by binding its
interfaces to its pop . Additionally, switch  provides an interface, roam, over
which existing phones are "handed over" to it. While it also creates a pop  in
response to a roam stimulus, it does not create a home location record, instead it
requests the mobile's home switch to update it.

component  msc (int ns) {
require  n[ns];
inst  switch s;
bind  mobile -- s.mobile;
bind  net -- s.net;
bind  roam -- s.roam;
bind  s.create -- dyn  pop;
forall  i=0 to  (ns-1) {

bind  dyn  pop.nets[i] --  n[i];
}

}

dyn popswitch

:msc(3)

mobile net n[0] n[2]

roam create

phone

Figure 1. The internal structure of a mobile switching centre

In this example, a GSM network is comprised of a fully-connected set of
switches; the network  component is parameterised by the number of mscs to
instantiate; a configuration of three mscs is shown in Figure 2. The network

exposes each msc's  mobile, roam and phone interfaces to the top level
component, the gsm system, also depicted in Figure 2.

mscs[0]

mscs[2] mscs[1]

r[0] p[0] m[0]

n[1]n[2]

netn[0]

:network(3)

:gsm(3)

new_phone

+44123 +33456 +49789

net: network(3)

mgr: manager(3)

roam[0]

p[0]r[0]

m[0]

Figure 2. A network of switching centres (left) and the entire gsm system (right)
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When the program represented by this configuration is run, an anonymous
instance of the root component, gsm, is created. This creates network  and manager

instances and exports each of network's  mobile interfaces into a global
namespace so that external programs (i.e., the mobile phones themselves) may
bind to them. The function of manager  is to maintain a window on behalf of each
msc showing the mobile phones currently active in each domain. It also permits
roaming to be simulated by dragging a mobile from one window and dropping it
into another, hence its bindings to the network's  roam interfaces. When a new
mobile announces itself to its home network, manager  is notified on its
new_phone interface and creates a new icon for it in its home window.

2.2 Binding Actions

In our model, the establishment of a binding between endpoints can be classified
by one of two idioms named for the originator of the binding action [CDFK95]. A
first-party binding is initiated by the component in the client role of the ensuing
interaction. A third-party binding is established by an entity which is neither
client nor server.

Third-party binding arises most often in the elaboration of a configuration
description; it serves to create an initial `binding harness' out of components'
public interfaces. The first-party idiom exploits this binding harness to permit
evolution of dynamic binding patterns between components' private interfaces.
Modern distributed programming environments [OMG95,Rog97] often only
recognise the need for first-party binding, with third-party binding relegated to
support for reconfiguration [Fried87].

Irrespective of its originator, a valid binding action must conform to two rules
which support the intuitive notion of a requirement as a placeholder for the
service to which it is bound: the bound interfaces must be of the same type and
compatible roles and a required interface may only be bound to one peer,
although many required interfaces may have the same peer.

The semantics of accessing an unbound requirement are determined by its
binder. A third-party binder  blocks its invoker until the binding action has been
completed but a first-party binder terminates the program with an error. While
these binders remove themselves from the invocation chain after initialisation, a
reconfiguring binder persists to service dynamic restructuring requests [Crane97].

2.3 Interaction Model

Components only interact through the communication endpoints that they expose
at their interface. The communication endpoints hide the internal implementation
of the component from outside, and provide distribution transparency to the
component implementation.
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Thread(s)

Figure 3. Model of Interaction

An interaction between two communication endpoints, a service endpoint and
a client endpoint, can be defined in terms of the messages accepted by the service
(the server-side message interface), the messages that the service requires the
client to accept (the client-side message interface), the synchronisation of threads
at those endpoints and the programming abstractions through which those threads
view the interaction (termed the client- and -server-side programming interfaces)

The messages define an application-layer protocol by which components
communicate over a binding; a pair of message interfaces constitutes a contract
[Meyer88] between two endpoints. That is, a service guarantees to react
meaningfully to messages received from a client as long as those messages are
within the service's accepted message set and as long as the client reacts
meaningfully when the service sends it messages that are within the service's
required message set. Further constraints upon the interaction can be specified
using state machines, specified separately for each endpoint of the interaction.

3 A Language for the Definition of Interactions

We have defined a language, Midas, for the definition of interactions in terms of
message interfaces and state machines. Midas specifications are compiled into
implementation language constructs that define message interfaces and provide
distribution transparency. Midas is based upon CORBA IDL [OMG95] in that it
uses IDL syntax for constant and type definitions. It is straightforward to translate
IDL definitions into Midas interaction specifications.

The example code below shows how Rendezvous is specified in Midas and
illustrates the main features of the language.

interaction  Rendezvous < type  T> {
messages ServiceMsgs { data( T value ); }
messages  ClientMsgs  { wake(); }

endpoint  Client : in  ClientMsgs, out  ServiceMsgs {
actions  { send }
spec  { 

CLIENT = READY,
READY = (send -> out.data -> BLOCKED),
BLOCKED = (in.wake -> READY | send -> ERROR). }

}
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endpoint Service  : in  ServiceMsgs, out  ClientMsgs {
actions  { read }
spec  {

SERVICE = (in.data -> read -> out.wake -> SERVICE). }
}

Client provide;
Service require;
spec  { ||RENDEZVOUS = (CLIENT || CHANNEL || SERVICE). }

}

The interaction  statement introduces a new interaction type, Rendezvous,
parameterised by the type of data passed from client to service. The body of the
interaction  statement contains nested definitions. The messages  statements
define the message interfaces as sets of named, parameterised messages, similar
to IDL interfaces except that messages are always one-way: they do not return a
value and only take input parameters. The endpoint  statement defines an
endpoint in terms of the messages received and transmitted it, the actions that can
be performed upon it via it's API and a state machine that defining its behaviour,
specified in FSP notation [Magee97].

4 Implementation of Midas Endpoints

A specification defines the externally visible attributes of an interaction but does
not define how those interactions are implemented within a component. Those
details are encapsulated by the component and depend on the details of the
component's implementation: the synchronisation of threads within a component
and the programming abstractions visible to the component's threads are outside
the scope of Midas.

A Midas specification is compiled into code which defines the abstract
message interfaces for each end of the interaction in the implementation
language, e.g. a C++ abstract class. The generated message interfaces contain one
operation for each of the messages accepted at the interface, operations to support
binding client-side endpoints and operations for memory management and
garbage collection.

A developer provides reusable endpoint abstractions to component
programmers, by defining classes that implement the abstract interfaces, provide
a programming interface to the interaction and perform thread synchronisation.

In addition to the abstract message interfaces, the Midas compiler generates
proxies supporting distribution transparency. These proxies are independent of
any particular implementation of the message interfaces and perform marshalling
and unmarshalling of message data.

4.1 Interactions between Concurrent Components

Midas can describe and implement interactions between concurrent components
in the same address space. The generated abstract message interfaces are used by
the developer to implement the programming abstractions visible within
components. The threading model used within the component is independent of
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the type of interaction used: the same role of an interaction can be implemented in
many different ways each substitutable for any other.

A client endpoint is bound to a service endpoint using a pointer to the message
interface of the service endpoint. Because endpoints implement the abstract
message interface, any implementation of a client-side message interface can be
bound to any implementation of a service-side message interface as long as they
are opposite roles of the same interaction type. Developers may implement the
operations of the message interfaces in any way they like as long as their
implementation supports message passing asynchrony. This constrains the
implementation of an endpoint: it must not cause threads that call the operations
of its message interface to block within the endpoint object. Synchronisation
between threads can only be implemented in terms of asynchronous messages
passed across the binding. An endpoint object that synchronises the calling thread
with threads at the other end of its binding must use encapsulated synchronisation
objects, such as semaphores. The calling thread must invoke an operation on the
bound message interface and then wait on a semaphore that it owns. When
another thread delivers a message to the endpoint, it can wake the blocked thread
by signaling the semaphore, as shown in Figure 4.

data(value)

wait on
semaphore

wake

signal
semaphore

in

out

wait on
semaphore

thread
scheduled

Figure 4. Thread Synchronisation for the Rendezvous Interaction

4.2 Interactions between Distributed Components

The model of binding and interaction in a single address space extends between
address spaces, providing distribution transparency through the use of proxy
objects [GHJV94]. Because messages can be sent in either direction at any time,
depending on the current state of the sending endpoint, a proxy is required at each
end of a binding: a ServiceProxy provides the illusion that the service endpoint is
within the same address space as the client endpoint and a ClientProxy providing
a similar illusion. Proxies are connected by a communication channel.

When components in different address spaces need to interact, the client
endpoint is bound to a ServiceProxy, created in the client's address space and
connected by some transport channel to a remote service endpoint. The
ServiceProxy implements the service-side message interface of the interaction
and, to the client, is indistinguishable from a true service endpoint.
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For a service endpoint to be able to interact with remote clients, it must make
use of some uniquely identified transport-level service access point (TSAP)
through which it can accept connections. This TSAP is managed by an
interaction-specific Acceptor object [Schmidt97] that accepts transport-level
connection requests from remote clients and creates a ClientProxy to manage
each connection. Acceptor classes for each interaction type are generated
automatically by the Midas compiler.

acceptor

service

proxy

client

transport

upcall

service
aClientEndpoint

transport

upcall

Client Address Space Service Address Space

Transport
Connection

aServiceProxy

aChannelSession aChannelSession aListenSession

aClientProxy anAcceptor

aServiceEndpoint

transport

upcall

Figure 5. Proxies and Acceptors Provide Distribution Transparency

Once a channel has been established between proxies, the endpoints can
interact. When the client-side endpoint invokes its ServiceProxy message
interface, the proxy marshals the message parameters into a data buffer and
transmits the buffer over the channel. When the ClientProxy in the service's
address space receives the data it unmarshals the message and invokes the
appropriate operation on the service endpoint's message interface.

Note that although the implementation has been described in terms of
channels, the concept of a channel does not necessitate the use of channel-based
protocols, such as TCP/IP. The channel abstractions can be implemented using
light-weight adaptor objects layered above packet-based protocols, such as
UDP/IP, or implemented using shared memory within the same host.

5 Related Work

The Open Distributed Processing Reference Model [ODP95] specifies three kinds
of interaction: asynchronous signals, flows or streams, and operations or remote
procedure call. The model describes two kinds of binding action, primitive which
links the endpoints directly and compound which interposes a binding object. A
primitive binding action requires the endpoints to be compatible: of the same
interaction type and opposite polarity. In a compound binding action, a series of
primitive binding actions links each of the endpoints to the mediating binding
object which, for example, may adapt incompatible interactions, or allow
management operations or quality-of-service control to be performed on the end-
to-end binding. The model enforces no correspondence between the initiator of a
binding action and the objects which communicate over the resulting binding,
somewhat obliquely recognising the utility of third-party binding.
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Abstract. Formal and informal methods for describing software
architectures traditionally focus on a system’s components and the
interfaces between these components. They assume a design
process in which the architect basically defines the architecture of a
single product. If variants of this product are required, they are
either handled implicitly or are defined at a later stage. Since
industrial development processes which result in families of
products are becoming increasingly common, there is a need for
architectural models and notations in which diversity is modelled as
an explicit and integral part of the architecture definition process.
We believe that the use of such models can promote the overall
optimisation of product families and can facilitate validation of
architectural decisions. This paper presents a model which can be
used to describe and manage architectures in a number of product
family-oriented design processes

1. Introduction

1.1 Product families

Industrial organisations increasingly need to develop software or software
embedded in hardware systems in multiple variants. This product diversity can be
necessary to accommodate different levels of functionality, regional requirements
or differences in preference between market segments. A major challenge for the
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architect of such a product family is thus to satisfy the required commercial
diversity while limiting the number of software components which need to be
specified, implemented and tested.

The potential business benefits of family-oriented product development are
significant: decreased development effort due to component reuse and the
opportunity to optimise the overall family (global optimisation). In addition,
product family development tends to go hand in hand with the validation of
whether an architecture is future-proof: if one has explicitly considered the impact
of various optional features, this tends to increase the likelihood that the
architecture can accommodate unanticipated requirements.

1.2 Diversity-aware architecture models

Unfortunately, although many organisations employ (often implicit) forms of
family-oriented product development, this does have its price. It requires the
software architect to take yet another factor into account during the design of the
architecture. In addition it requires the organisation to make its planned
commercial diversity explicit in an early stage of the product development
process.

Family-oriented product development poses thus considerable demands on the
ability of an organisation to internally communicate. We therefore believe that the
methods and tools used by architects to describe software architectures should
explicitly accommodate the diversity or variant dimension [7] of architecture
design. This supports the architect when dealing with this complex web of
information. It also gives the other stakeholders the opportunity to validate the
architect’s plans from the perspective of their field of expertise.

1.3 Goals of model

In this paper we describe a model for representing the architecture of a family of
technically related products. To visualise examples of such architectures, we use a
simple graphical notation. We want to focus on the underlying model, rather than
on the various somewhat arbitrary graphical or syntactical elements of a particular
notation.

With this model we attempt to satisfy the following main goals:
1. The model should cover system hierarchy or system composition as well as

component diversity.
2. The model should be unambiguous because it serves as a means of

communication about strategic information between persons with a wide
variety of backgrounds.

3. The model should cover a broad range of family-oriented software
development styles and processes.

4. Minimal training should be required to learn how to interpret the model’s
concepts and notation.

5. The model should be compatible with mainstream methods for designing
hardware and software systems.
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6. The model should be sufficiently general in the sense that it can be applied for
software systems, hardware systems and mixed hardware/software systems.
With respect to the last goal, it is worth pointing out that this model is the

result of a larger project within Philips in which the impact of product families
and diversity was analysed in software development, Printed Circuit Board
design, and system design.

2. Hierarchy and Diversity Model

2.1 Hierarchy-only models

Architectures of
software systems are
complex to describe
and involve multiple
aspects of the design.
By most definitions,
e.g. [5][6][10][12], an
architectural model
describes how a
system is decomposed
into smaller subsystems. Such decomposition is typically displayed as a tree or as
nested boxes. Figure 1a shows the hierarchical decomposition of system M into
three subsystems A, B and C. Subsystem B is further decomposed into elements
P, Q, R and S.

Figure 1b shows the same decomposition, but also shows how the various
subsystems relate or interface to each other. Such a graphical diagram is typically
augmented with extra textual information about this relationship e.g. the name or
type of the interface or which functions are part of it. The interface notation in this
diagram is inspired by the interfaces representations in Darwin [9]. The hollow
and solid circles represent interfaces with “opposite polarity” (e.g. interfaces
which provide a service and interfaces which require a service).

Note that both representations in Figure 1 denote a hierarchy-only model of the
architecture e.g. system M always contains the same B which always contains the
same Q. The model thus describes the structure of a single product. In the
following sections we will explain via stepwise refinement our model for
describing the architecture of families of products or software systems.

2.2 Modelling Hierarchy and Diversity

In our model we combine two major aspects of product family architectures,
namely the product’s hierarchical decomposition and the variations that are
supported by the product family. This is shown in Figure 2, using a schematic
example. We will use every day examples from the automotive world to ease
overall understanding of our model.

M

BA C

P Q R S

M

A

B

C

a) b)

Figure 1 Representing Hierarchy of an Architecture
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As in Figure 1, a system named M.1 (Figure 2a) is hierarchically decomposed
into components named A, B and C. For example a family of economy cars is
stated to have a chassis A, a transmission B and an engine C. Unlike the model
shown in Figure 1, our model in Figure 2 explicitly distinguishes between abstract
components (shown in dark) and component variants (shown in white). An
abstract component is essentially a partially defined component (e.g. the concept
“engine”). Figure 2a thus states that any member of this car family has an engine.
It does not state exactly what type of engine is used because the design is assumed
to support multiple types of engines.

Figure 2b shows that the abstract component transmission (B) can be one of 2
components (e.g. manual and automatic transmission). Compared to an abstract
component, a component variant is more fully specified. Another way of looking
at this is that an abstract component is a place-holder for one or more
implementations (“component variants”) of the same basic idea or design. As
shown in Figure 2b, the car family supports 2 different chassis, 2 different
transmissions and 3 different engines.

A particular component variant (e.g. manual transmission B.1) can have a
known internal structure. Here B.1 consists of (abstract) components P, Q, R and
S. Note that component variant B.2 will generally have a different structure (not
shown) which may or may not share (abstract) components used in B.1.

Our model is fully recursive in the sense that B.1 may itself be a family of
manual transmissions. This family has a fixed structure in terms of abstract
components (Figure 2c), but achieves its diversity by supporting alternative
variants for the lower level components. Note that on the one hand Figure 2b
states that there are 2 variants (B.1 and B.2) of the abstract component B. On the
other hand Figure 2d indicates that B.1 is actually a collection of (more precisely
defined) variants because it contains 3 selectable components (P, Q and R) and 1
fixed component (S).

The recursion in our model is characterised by a Z-pattern as shown in Figure
2. The example shows only 2 levels in the hierarchy, but our model supports any
number of levels. However, in practice it is very well possible that the diversity

 P.2

 Q.2

 R.4
 R.3

 R.2

 C.3 C.2

M.1

BA C
C.1

C

B.1

P Q R S

R

R.1

 A.2A.1

A

 B.2B.1

B

P

P.1

Q

Q.1

S

S.1

Hierarchy View Diversity View
a) b)

c) d )

Figure 2 Hierarchy and Diversity
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view at some levels may get somewhat degraded, because each abstract
component has only one variant.

2.3 Adding interfaces

Another ingredient of our model is that we use interfaces to link the components
of a hierarchical decomposition. Figure 3 shows the same sample product family,
but in a more elaborate/detailed notation. The small circles on the border of the
component rectangles represent component interfaces. The lines connecting these
interfaces show how the (abstract) components are interrelated in the family
architecture. Example: the chassis (A) and the transmission (B) directly interface
to the engine (C) in car family M.1

An interface in our model is defined as an independent item, and thus reusable.
Each component has a known set of interfaces. A component which is used in
multiple contexts will have the same collections of interfaces in each context.
Interfaces are typed and components can only be linked via “compatible”
interfaces. The advantage of having typed interfaces is that rules can be defined to
verify a certain level of correctness of an architecture. By regarding interfaces as a
property of a component it is easier to reuse a component in another context.
Interfaces treated in this way also allow us to reason about a component
independently of a higher level architecture in which it is applied. Example: the
engine and/or transmission can also be used in other car families.

2.4 Constraining Combinations

In the previous sections we introduced abstract components as place-holders for
component variants. In some ideal case, it may be possible to combine each
component variant with every variant of the other abstract components in an
architecture, resulting in maximum flexibility. Figure 3b shows that combining
component variants without any restriction will result in a total of 12 (=2x2x3)
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Figure 3 Adding interface information
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possible configurations for product family M.1. E.g. our car model may come in
12 main variants involving 2 different chassis variants, 2 different transmissions
and 3 different engines.

In practice, however, there may be all kinds of reasons that make particular
combinations of components unfeasible. A common way to handle combinations
is to use interface information: whether or not 2 components can be combined can
often be related to their interfaces. To handle such cases we do not use the
implicit connections between the abstract components (as shown in the diversity
views of Figure 3). In our model, feasible combinations of component variants are
expressed by explicitly connecting their interfaces as shown in Figure 4.
Incompatible interfaces are simply not connected in the diversity view of a family
(e.g. A.2 and C.2 cannot be combined).

Although this
mechanism is intuitive
and handles many of the
restrictions found in
practice, it cannot
handle situations where
components do not have
a common interface (e.g.
A and B in Figure 4) or
where more than two
components are
involved. To handle
such cases, we have
added simple rules called constraints to our model. A constraint can express for
example that certain component variants must always occur in combination or
may never occur in combination. E.g. the automatic transmission variant may
never be combined with the simple chassis variant. Note that there is no graphical
notation for constraints in our model. The scope of this paper does not allow us to
discuss constraints in more detail.

2.5 Individual Configurations

The graphical representation of a product family architecture in our model can
also be used nicely to
“browse” or “query”
the architecture,
assuming that the
model is supported by
a tool. One such query
could be to show or
highlight the
component variants
that together constitute
a particular
configuration. Figure 5
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Figure 4 Feasible Component Combinations
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shows the result of a query to display or highlight configuration M.1.2 in the
diversity view of M.1. From the figure one can see that this configuration consists
of component variants A.1, B.2 and C.2. Another query could be to show all
configurations in which a particular component variant or combination of two
variants occurs.

3. A Software Example

Figure 6 shows an extremely simplified version of the control software for a
family of television sets. For simplicity, only the diversity in the teletext

1

component is shown. Obviously, in practice diversity will also be present in many
other components as well.

Figure 6a shows the most abstract level of the TV control software
architecture. Moving to the diversity view in Figure 6b we see the diversity of the
teletext component. It can be seen that there are two variants of the teletext
component, a simple and a deluxe version. Both of these variants have in turn
their own internal structure as shown in Figure 6c. Although their architectures are
different, we can see that the same Acquisition component is used in both the
simple and the deluxe variants of the teletext component. In other words, our
model can also be used to identify where components can be reused. Finally, the
diversity view in Figure 6d shows the diversity within the Acquisition component,
in this case caused by the need to support two different types of teletext chips.
Here we can see how the diversity view can be used to support the evolution of
product families. E.g. a particular teletext chip was initially chosen for our
example family of televisions but the range was later extended using a more
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advanced chip. By making both the architecture and the diversity explicit one can
show the impact this has on the software, as well as help document the rationale
behind the decision.

4. Discussion and Conclusions

Figure 6 above is just a simple example of how hierarchy and diversity can be
integrated but should be sufficient to show how we have solved the first of the
goals listed in the introduction. Our model allows hierarchical levels to be added
in both directions: upwards and downwards. Extra levels can be added
downwards to cope with complexity in the software, or upwards to describe a
complete system as the top of the hierarchy. Further, by applying the model to
cover other disciplines as well, the complete hardware and software architecture
of a product family can be communicated and managed in a similar way (goal 6).
In fact, the underlying ideas behind this paper, that both the hierarchy and
diversity of a product family should be made explicit and that they should be
handled recursively, were originally related to electronics development for
consumer products.

Our approach differs from the idea of variation points as introduced by
Jacobson et.al. [8]. Variation points serve another goal than we are aiming at. In
particular the diversity supported by the variation points is hidden by the
components themselves. One component may have several variation points and
each may be designed in its own way. The variation points do not provide the
hooks for managing the diversity of a complete product family. Our main point is
to integrate the aspects of diversity and hierarchy to manage product families. We
can imagine, however, that at the moment of design, variation points will be
useful in expressing how the implementations of the components are related to
each other, and how the recognised variation takes form.

In most approaches, e.g. [5][6][10][12], a software family architecture
represents only a single hierarchy, where the variation is seen as an add-on
feature. Often variation is modelled through inheritance, simple parameters,
and/or optional parts. In our approach each variant gives rise to a complete sub-
hierarchy. These sub-hierarchies may differ for each variant.

The GenVoca approach [2][3] separates between provides and requires
interfaces. The requires interfaces are called the component parameters.
Components that provides the same interface comprise a realm. By (recursively
giving values to parameters hierarchical systems (including recursivity) may be
built. Restrictions may be formulated that restrict the number of combinations that
may be formed.

All these ingredients can be used to build systems described in our model.
However, our approach is different from that of GenVoca, as follows. First, our
aim is to put emphasis upon local views of the proposed and developed systems in
the family. We show at each level what are the connections between the
components that make up a higher level component. Thereby, our requires and
provides interfaces differ from those of GenVoca. We use these interfaces for
connections of components that build up a component of a higher level. A realm
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in the sense of GenVoca is equivalent to the kind of information showed in our
diversity view. We do not use the term provides interface in that context.

We do not propose a general grammar view for our descriptions, as GenVoca
proposes. Although we do not forbid recursive structure we also do not want to
recommend them. We are usually dealing with systems with a fixed depth, the
recursion is always limited.  As with GenVoca we agree that we cannot use
standard interfaces (our kind of interfaces!). We do not like to use an attribute
grammar approach, as our model is aimed to facilitate the architect/developer, but
not on automating the checks. Therefore, for us local view are crucial. We have
presented here the most simple kind of restrictions, viz. those that can be
visualised. Other restrictions can be described, but should preferably be described
locally, and they should only be used with care.

Finally, our approach resembles the way in which integrated circuits are
modelled in VHDL [1], a major hardware description language. In VHDL, the
term “Entity” represents a design with a well-defined interface. An Entity can
have one or more models (called “Architectures”) which typically represent the
Entity at different levels of abstraction (e.g. behaviour, register transfer, or gate
level). An Architecture can contain component Entities. Although both models are
structurally isomorphic on this point, VHDL deals with alternative levels of
abstraction of a design (“views” in [7]) while our model covers intended to
achieve diversity (“variants” in [7]).

One particularly important area for future work is investigating ways in which
these ideas can be practised using mainstream development methods, such as
UML, rather than using a specialised Architecture Description Language (goal 5).
As explained by Robbins et. al. [11], while ADL’s provide a great deal of
expressive power, they are not well integrated with mainstream development
methods. Consequently, if one describes the architecture using a dedicated ADL
and, as we suggest here, continues the diversity analysis deep into the
development phase, two different methods and notations will have to be used in
parallel. This is not only inefficient, since the same information will have to be
documented twice, it is also prone to inconsistencies, which is unacceptable. One
solution would be to instigate consistency checking across the two methods but
our preferred approach is to utilise and extend existing facilities within the
mainstream development methods to model the diversity. A detailed discussion of
this issue falls outside the scope of the paper.

Another issue that falls largely outside the scope of this paper is the impact that
the approach has on the software development process and on the product
creation process (goal 3). However, we would like to discuss two particular
aspects in more detail. As mentioned above, the model is recursive, so one is able
to work in either a top-down and a bottom-up manner. In practice these two
approaches will be combined. On the one hand, new ideas will typically be
developed in a top-down manner, starting with a fairly abstract idea and then
adding the details. On the other hand certain features that have been developed for
previous product families are already well understood so the details are known
immediately, i.e. one can work in a bottom-up fashion, starting with the details
and then working towards a complete system description.
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Also, by explicitly managing the variants of a particular component, the idea of
relatively independent development processes can be introduced. This is already
common practice when one integrates 3rd party software, such as databases, into
the product, but can now also be applied to proprietary reusable components.

Regarding goal 2, we have eliminated certain types of ambiguity by
formalising [13] the structure of our model using semantic information modelling
techniques [4].

Finally, we leave it to the reader to decide to what degree we have succeeded
in achieving our goal 4 of intuitiveness and clarity.
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Abstract. We introduce a component model with an architectural
description language that helps to manage the growing complexity and
diversity of software in consumer electronics products. The model supports
flexible instantiation and late binding of components at an absolute
minimum of product costs (code size and speed). The model is being used
in the production of the next generation of mid to high-end television sets.

1. Introduction

In consumer electronics products such as TVs and VCRs, software roughly
doubles in size every two years [1]. Control functions become more complex,
signal processing tasks shift from hardware to software, software intensive
features emerge (Electronic Programming Guide), products are integrated (TV-
VCR), and software functions typical for the computer domain are added
(Internet). Next to this, the market demands a higher variety of products at a
higher introduction rate, urging us to create even more software in less time. We
shall deal with two fundamental software development problems in this paper:
how to manage the growing complexity of the software and how to manage the
required diversity.

Our first problem is to manage the increasing complexity of the software. In
practice this means that the actual architecture (i.e. the structure of the code) must
be managed, not the intended one (which can be found in the architecture
documents). Previously, we utilized an architecture verification paradigm by
extracting the structure from the code and comparing it with the intended structure
[2]. We now want to tackle the problem by its roots and define the structure in an
architectural language, thus equating intended and actual.

Our second problem is to manage diversity. We cannot handle the exponential
growth of software with a similar growth of development teams. Instead we must
reuse software within product families (TV), between product families (TV-VCR)
and from other domains (computing). This implies that we must separate
components and configurations; components must be completely configuration
independent, and we must have flexible mechanisms to instantiate components
and bind them into configurations.
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Various component technologies are available in the world (e.g. COM [3]), and
the same holds for architectural languages (e.g. Darwin [4]). Unfortunately, the
computing hardware in high-end CE products of today resembles personal
computers of ten years ago: 16 bit micro controllers operating at 20 MHz, 10-100
Kbytes of RAM and 100-1000 Kbytes of ROM. Therefore, though we can use the
concepts of modern technology, we have to choose our own implementation
techniques to support this. The rest of this paper will explain how we achieve this.

2. The Koala Component Model

We shall explain components, interfaces, configurations and binding in this
section, and go into more detail in the next sections.

Components

A component is an encapsulated piece of
software. It is a unit of development and a unit
of architectural design. A component is non-
trivial in size, yet sufficiently self-contained
and configuration independent to be a reusable
asset.

A component can communicate with its
environment through interfaces. A component
provides functionality through interfaces, and
in order to do so it requires functionality through interfaces. All external
functionality is required through interfaces, even access to the operating system or
other general services. Note that in COM, most required functionality is implicit
in the code, with the exception of connectable interfaces.

We draw components as rectangles and interfaces as small squares containing
triangles (see Figure 1). The triangle designates the direction of function call. The
similarity with integrated circuits is intentional: people in the TV domain will
readily understand such pictures, and also we tribute the hardware reuse that has
already taken place for years.

Let us be somewhat more precise. A component type is a reusable component
in isolation; a component instance is an occurrence of such a component in a
particular configuration. Components are by default single instantiatable, i.e. they
can occur only once in a single configuration, but they can be made multiply
instantiatable as well (see section 0).

2.1 Interfaces

We choose to describe connections between components at a level higher than
that of single functions. An interface is a small set of semantically related
functions (like in COM). To be more precise (again), an interface type is a
syntactic and semantic description of an interface, and an interface instance is an
interface occurring in a component.

p1 p2

p3r1 r2

r3

Figure 1 An example component
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An interface type is described in an interface description language. We use a
simple IDL, resembling COM and Java interface descriptions, in which we list the
function prototypes in a C syntax (see Figure 2). Our interfaces contain functions
only. Types are automatically made available wherever they occur in interfaces.
Constants are treated as functions.

A component type is described in a
component description language (CDL,
see Figure 3). We list the types and
instance names of the provides and
requires interfaces. Note that the
interface instance names are unique for a
component, whereas component and
interface type names must be globally unique.

2.2 Configurations

We construct configurations by instantiating
components and connecting their interfaces. A
requires interface must always be bound to precisely
one provides interface, but a provides interface may
be bound to more than one (or zero) requires
interfaces.

A configuration is described in the component description language as well
(see Figure 5). The description contains two sections, one declaring the
component instances and one connecting their interfaces. Needless to say, the
description closely resembles hardware parts and net lists. Note that component
instances have names unique to the configuration in which they are instantiated.

2.3 Implementation

We shall now describe some implementation
aspects. We implement components in C
(and not e.g. C++, remember our resource
constraints). A component is a set of C and
header files in a single directory, which may
freely include and use each other but may not
have any reference to any file outside of the
directory. Next to a globally unique type name (the long name), each component
type has a globally unique short name, consisting of say 4 characters.

interface  VolumeControl {
   void  setVolume(Volume v);
   Volume getVolume( void );
}

Figure 2 An interface definition

Component Amplifier {
   provides  VolumeControl vol;
   requires  VolumeControl drv;
}

Figure 3 A component definition

Figure 4 A configuration

component  System {
   contains Amplifier a;
            AmpDriver d;
   connects  a.drv = d.vol;
}

Figure 5 A configuration definition
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A function f in a provides interface p of a component C with short name c is
implemented in C as c_p_f.  A function f in a requires interface r of a component
is called as r_f. How does a call of r_f in one component arrive at c_p_f in
another component? Simply by a:

#define  r_f(...)  c_p_f(...)

Such statements are generated by a small tool called Koala that reads CDL and
IDL and produces header files to be included by component implementations.
Note that the name c_p_f must be globally unique (hence the use of c), but the
name r_f has as scope only the calling component (and is within that scope
unique). See [5] where the same technique is being used. We find this technique
very useful in our current applications (106 lines of code).

3. Extensions to the Model

The model described in the previous section is sufficient to build complete
systems, but for practical use some more features are required.

3.1 Compound Components

When building large systems consisting of hundreds of
components, it becomes unfeasible to interconnect
them in a single description: the description gets too
large to be understandable, cannot be easily
maintained by a team of people, and different
expertise areas are needed for different parts of the
configuration. Therefore we make the component
model recursive: any combination of components can
again be viewed as a component with provides and
requires interfaces.

Note that connections between interfaces can now
be routed in more ways than described before. We
find it easier to state that the tip of each triangle
(drawn in an interface) must be connected to precisely one base, and that each
base may be connected to zero or more tips. This allows for shortcuts between
interfaces on the border of the component, a facility that can be used to obey strict
layering conventions without any implementation overhead.

Figure 6 A compound
component
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3.2 Gluing Interfaces

A direct connection between interfaces is not always
sufficient. It assumes that components are completely tuned
to each other in their interfaces, and this is often not the case
in the evolution of our software over the years. Moreover,
consider OCX components which are (claimed to be) highly
reusable but which must be glued with Visual Basic. We can
define glue components, but the managerial overhead of that
is just too large. Therefore we introduce modules.

A module has a name unique for the component type in
which it occurs. If a tip of an interface is connected to a
module, then its functions are implemented in that module. If
a base of an interface is connected to a module, then those functions are (possibly)
used by the module. The naming conventions are extended to cope with this new
situation, but we shall not discuss that here.

Koala generates for each module a header file. The component designer adds
one (or more) C files to implement the respective functions. This mechanism is
also used to implement basic components (that contain no instances of other
components): by connecting provides and requires interfaces to one or modules,
the designer can control the generation of header files.

3.3 Multiple Instantiation

In our systems, most components occur only once in a single configuration, and
the implementation techniques described above are then sufficient. For some
components, mostly of a service nature, it would be convenient to be able to
instantiate them more than once. Our language and binding tool supports this, but
only for components that are explicitly declared as multiply instantiatable (MI).
The implementation conventions (still in C) are extended in a straightforward
way: each provides function in an MI component has as extra (first) parameter a
pointer to an instance data structure. All binding is done at the instance level, so
that in calls to functions in requires interfaces these pointers are not seen. Instead,
Koala adds them in the appropriate #define statements. Koala also creates the
instance structures. Note that we mimic C++ implementation techniques for classes
and instances here.

3.4 Packages

We assume that component type and interface type names are globally unique.
This is not a necessary element of our approach: it is relatively simple to add the
notion of a package with private and public types and with import statements (as
in Java). We shall do this in due time.

Figure 7 Gluing
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4. Diversity

The use of components with explicit interfaces and an architectural description
language serves our first purpose: to manage complexity. How do we manage
diversity? First of all, the strict separation between components and
configurations already allows us to create a multitude of configurations with a
single set of components, adding glue wherever necessary to match the
components. In this section we extend our model with several other features. We
shall both deal with internal diversity (within components) and with structural
diversity (between components).

4.1 Interface Compatibility

We follow the COM convention that an interface type, once defined, may never
be changed anymore. Still, new generations of components may require the
definition of new interface types that are small extensions of existing types. Of
course, we can bind a requires interface of type I1 to a provides interface of type
I2 (consisting of all the functions in I1 plus a few extra) by inserting a glue
module, but the syntactic and code overhead of this is quite large. Therefore we
allow the tip of an interface to be bound to the base of another interface if the first
interface is of a subtype of the second. This is the case if the set of functions in I1
is a subset of that of I2.

4.2 Diversity Interfaces

We believe that components can only be made reusable if they are ‘heavily
parameterized’ (compare the long property lists of Visual Basic components).
Traditionally, this results in components using lots of RAM and ROM. In
resource constrained systems, we can only parameterize our components ‘heavily’
if we have a way of removing undesired flexibility when inserting the component
in a configuration. The parameterization is necessary for the family of products,
and not for individual products.

In our component model, diversity parameters
are declared as functions in requires interfaces.
Note that this implies that their implementation
lies outside of the component (as opposed to
Visual Basic, where properties are implemented
within the component). The reason for this will become apparent in the next
section. Requires interfaces containing diversity functions are called diversity
interfaces (though in the model, diversity functions can be (and are) freely
intermixed with ‘normal’ requires functions). Note that our mechanism in fact
unifies the notions of parameterisation and binding, by reducing the component
parameter assignment to a binding operation.

Figure 8 A diversity interface
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4.3 Late Binding

The trend in binding techniques is to shift the moment of binding from compile
time to link time to initialization time to run time. Our model supports various
forms of late binding, but to explain this, we must introduce another time scale,
relevant for the development of embedded software.

Consider the binding and instantiation decisions that have to be made in order
to get a running system. A number of decisions can be made at component design
time. As we strive for configuration independent components, a (large) number of
decisions must be postponed to configuration time. Even then, not all decisions
can be made, as it is common to generate a single ROM mask to support a variety
of products. Option bits in a non-volatile memory (set in the factory) can then be
used at run time to complete the binding decisions.

The strength of our approach is first of all that configuration time binding is
not equated to link time binding, and secondly that the component designer need
not know beforehand whether ‘non component design time decisions’ are made at
configuration time or at run time. We achieve this as follows.

Each diversity parameter is defined by a C macro within the component
(following our binding implementation conventions). A component designer may
treat such a parameter as a normal function, and write for instance:

if ( div_param() ) { do_something(); }

The parameter may be set to false at configuration time. The system can then
be (re-) compiled, and the compiler will throw away the ‘do something’ clause,
resulting in optimal code. The parameter may also be defined as a run-time
function. This will then result in run time diversity resolution.

As most compilers are not able to remove unused variables and unused local
functions, a second facility can be used by the component designer to aid the
compiler. A special macro is generated if the diversity parameter is assigned a
constant at configuration time. This can be used to guard certain constructs with
#ifdef statements.

4.4 Switches

Diversity interfaces can be used to control
the internal diversity of components. What
about structural diversity?

Suppose that a component A uses B1 in
one product, and B2 in another product. We
can simply define two configurations to
implement this, but A may be part of a
complex compound component, and we do
not want to duplicate the rest of that. Our
basic solution is to insert a module between
the requires interface of A and the provides

A

B1 B2

Figure 9 A switch
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interfaces of B1 and B2. As this is a re-occuring pattern, we introduce a special
concept for this.

A switch is an element that can be used to route connections between
interfaces. Its top must be connected to the tip of one interface, and each of its
‘bottoms’ can be connected to the base of a different interface. The switch setting
is controlled through a diversity interface.

Our binding tool Koala knows about switches. If a switch is set at
configuration time to a certain position, then the other component is removed
from the configuration (if it has no other connections), and the connection to the
remaining component is just as in the case of static binding (with zero overhead).
If the switch setting is not known at configuration time, then some form of code is
generated (e.g. a set of if statements or a VTable technique) to connect the
interfaces, and all components are included in the configuration. Naturally, this
process is executed recursively for compound components.

4.5 Function Binding

How can individual diversity parameters be
set to a constant value at configuration time?
An interface is connected with its tip to
perhaps other interfaces, but ultimately
through a chain of such bindings to a module.
In this module, the function can be
implemented in C, but then Koala has no
knowledge of it and cannot optimize.
Functions in modules can also be implemented in CDL in a subset of the C
expression language, using constants, operators and functions available through
other interfaces. This allows Koala to perform optimizations such as constant
expression folding.

This mechanism enables a very convenient treatment of diversity parameters.
Diversity parameters of inner components can be calculated using expressions
containing constants and outer diversity parameters (the flow of information is
(usually) inwards). In other words, we obtain an object-oriented spreadsheet of
diversity parameters. This allows us to express diversity in different terms at
different levels of aggregation.

An interesting side effect of this spread-sheet approach is that Koala can
calculate certain design properties such as memory usage at configurations, if
basic components export this information through provides interfaces and
compound components perform the correct calculation and export it again.

Figure 10 Function binding
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4.6 Optional Interfaces

Suppose that a new version of a component supports
a new provides interface and needs a new requires
interface. We can give the new component (type) a
new unique name, but then the component is not
automatically inserted into existing configurations.
Instead, we allow the addition of interfaces to
existing components, provided that they are
declared optional (and drawn dashed, see Figure
11). Our treatment of optional interfaces resembles
the COM Query Interface mechanism.

An optional interface has an implicit extra function called iPresent, which acts
as a boolean diversity parameter. It is true if the tip of the interface is connected to
a non optional interface, false if the tip is not connected at all, and defined within
the module if the tip is connected to a module. If the optional interface is
connected to the base of another optional interface, the iPresent function inherits
the value of the corresponding function in the other interface.

At the base side of the interface, the function can be used to establish whether
the other functions in the interface may be called at run time. Koala will generate
the necessary stubs for dangling interfaces to ensure that the software is compile
and link correct.
In our example, the new interfaces may be connected to a new module, and
iPresent of the provides interface may be equated to iPresent of the requires
interface. If the component is used without connecting the optional requires
interface, then the optionally provided functionality is not available.

5. Execution Architecture

The basic rule in our approach is to make components configuration independent
as much as possible. As an illustration, we shall show in this section how we
define the execution architecture. Our approach is to define components in such a
way that the actual execution architecture can be established at configuration time.

5.1 Events

First of all, how do we deal with events? Instead of defining some event handling
mechanism in our model, we just advise component designers to signal events
through outgoing (requires) interfaces (just like in Visual Basic). Another
component that uses services of the component can provide an event-handling
interface that can be connected to the event-signaling interface. In a multi-
threaded system, functions in event interfaces are called on the thread of the
component raising the event, so the general rule is that the handling must be quick
and non-blocking.

We do not advise basic component builders to include event subscription
mechanisms in their components (though it’s not in conflict with the model), as in

Figure 11 Optional Interfaces
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our systems there is usually one (product specific) destination for events. Instead,
we implement event multicasting and subscription at the configuration level, using
glue modules wherever possible.

5.2 Threads and Tasks

Our systems consist of many components but few threads (remember the resource
constraints). We therefore advise not to declare threads in basic components, but
instead declare them at the configuration level. Each component may implement
its time consuming activities in terms of tasks, which are scheduled synchronously
by a task manager running in a global thread. To do so, a component requires a
thread ID through a virtual thread interface, and creates its tasks on such virtual
threads. At configuration time, the (many) virtual threads are mapped to the (few)
physical threads, thus enabling Gomaa’s principle of Task Inversion (sometimes
called thread sharing) [6].

A component may have tasks that operate on different time scales, and thus
have to be implemented in different physical threads. It then requires two (or
more) virtual thread interfaces, which will be mapped to different physical threads
at configuration time. In this case, the component must make sure that internally
the different activities are properly synchronized.

The rules stated above are not absolute. We propagate an SDL style of
programming for simple activities, but for activities for which the Ada style of
programming is more appropriate, a thread may be created within a component.

6. Concluding Remarks

We have introduced a component model and an architectural language optimized
for resource constrained systems. Roughly spoken, the component model allows
us to manage diversity, and the architectural language to manage complexity. At a
number of points we deviate from existing approaches:
• we make all requires interfaces explicit (including the use of standard

services), thus making connectable interfaces a natural element of our model;
• we treat component parameterization as a binding issue, by defining diversity

interfaces;
• we support configuration time and run time binding, but do not equate

configuration time binding to link time binding;
• we support internal and structural diversity, but regard structural diversity as

internal diversity at a compound level;
• we provide a spreadsheet-like approach towards diversity parameters, where

the parameters of inner components can be calculated in terms of parameters
of compound components.

A small number of extensions to this model are still possible. The model is being
used in the development of our next generation television sets. Ultimately, we
want to be able to incorporate third party software (such as Internet browsers) in
our products. We therefore plan an evolution of our component model towards
emerging standards in this field. We believe that our model is flexible enough to
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be used in combination with COM and JavaBeans, and we plan to demonstrate
this in the near future.
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Architecture recovery is concerned with deriving high-level architectural information 
from the information available about a system. The available information usually 
consists of the source code of the system, various documents, and possibly domain 
and application experts. Most architecture recovery efforts aim to use automatic tools 
as much as possible. In many cases the goal of architecture recovery is to produce the 
architecture of  one or more existing, successful, systems in order to use it as the basis 
for developing a family architecture for a product family. 

The session started with the following initial set of issue to be addressed: 

1. What roles do tools play in architecture recovery and are they adequate? What 
new tools are needed? 

2. How to describe the results of architecture recovery? This issue addresses the  
relationship between architecture recovery and description techniques. 

3. Is it possible to recover dynamic aspects of an architecture such as interprocess 
communication behavior of a system? 

4. In the context of product families, how can architecture recovery take advantage 
of, and integrate, domain knowledge in the process. 

The presentations of the papers in the session addressed most of these issues. 
Wolfgang Eixelsberger described the experience of recovering the architecture of a 
family of train protection systems. Johannes Weidl described the use of a specialized 
tool to recover implementations of state machines in the source code and describe 
them in a generic way. Nabor Mendonca described an experiment to address recovery 
of dynamic structure by applying architecture recovery to a client server system. 
Nelson Weiderman discussed the use of middleware for systematically evolving the 
architecture of legacy systems into distributed systems.  

A lively discussion ensued in which even the idea of architecture recovery was 
questioned. One participant stated that in his organization they cannot afford the time 
to do architecture recovery: they have to produce and ship a new product every few 
months. Another participant stated that it is simply impossible to find enough skilled 
architects; therefore the more you can find about architecture of systems by automatic 
means, the better off you are. It was clear that how much architecture recovery you 
do depends on your application and domain area. 
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Other interesting issues raised during the discussion were: 

1. Alexander Ran pointed out that architecture recovery is akin to porting an 
operating system. During the port, you discover the assumptions that were made 
about the environment. Nelson Weiderman pointed out that the year 2k problem 
is the same: we are trying to find out what assumptions the designers have made 
and modify them. In these tasks, the more modern software engineering 
techniques make it easier to do recovery. 

2. Bob Balzer observed that rather than try to recover the architecture of several 
systems and combine them into a family architecture, you should try to recover 
the variability mechanisms already in the system and use those as a basis for 
developing the family architecture. 

3. Dave Weiss stated that it is important to decide what assumptions are being made 
about the product line and what changes are expected. Sometimes you are stuck 
with some decisions. Therefore, it is important to document and classify your 
assumptions. 

There seemed to be some general consensus on a few issues at the end: 

1. The purpose of architecture recovery is to understand what is there already. 
Usually this is done on a successful system and therefore we also would like to 
understand why the system is successful. 

2. Human intervention is necessary in reverse engineering and in architecture 
recovery. 
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Abstract. Industrial software development is often an evolutionary
process. Software products are developed for one specific customer and
later on refined for other customers with different requirements in terms of
a product family. Refinements happen at the implementation level
(algorithms and data structures) and on the architectural level (the overall
system structure). Recovery of architectural information is necessary to
build up a complete and unambiguous description of the architecture of a
system. In this paper, we describe an approach for the recovery of
architectural structure that focuses on component and connector
identification. We describe different strategies to define components and
connectors of the system. The examples given in the paper were developed
out of an industrial case study, a real-time Train Control System. The
recovered architectural description allows reasoning about the quality of
the system architecture: The description of the architectural structure
revealed hardware-dependent components that in case of a hardware
change would have to be changed completely. Therefore, our
investigations showed that such a recovery of architectural structure is
important to reduce future efforts in the development and maintenance of
product lines.

1. 1. Introduction

Software architecture, a concept for focusing on different properties of a system
has become one of the most interesting and compelling software engineering
research topics in the last years. David Garlan and Dewayne Perry gave a
definition that is a compromise to many interpretations of the term: “The structure
of the components of a program/system, their interrelationships, and principles
and guidelines governing their design and evolution over time.” [1]

The structural issues of a software architecture “include the organization of a
system as a composition of components; global control structures; the protocols
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supported by the European Commission under ESPRIT framework IV contract no.
20477.

mailto:wolfgang@nocrc.abb.no
mailto:hb@nocrc.abb.no
mailto:H.Gall@infosys.tuwien.ac.at
mailto:B.Bellay@infosys.tuwien.ac.at


www.manaraa.com

90      Wolfgang Eixelsberger et al.

for communication, synchronization, and data access; the assignment of
functionality to design elements; the composition of design elements; physical
distribution; scaling and performance; dimensions of evolution; and selection
among design alternatives.” [2]

1.1 Software Architecture Recovery

Software architecture related activities are often purely seen as forward
engineering activities. However, many applications are not developed from
scratch but derived from existing systems. Application development in industry is
often an evolutionary process building on knowledge and reusable code of
previous versions of the software systems successfully in use. The available
information about previous systems is however often incomplete and inconsistent,
especially when it comes to software architecture information. Complete and
consistent architectural information of these systems is therefore of special
interest and has to be recovered by using re-engineering concepts.

Therefore, architectural information of legacy systems has to be extracted from
source code, documentation or other sources of information.

In the ARES project, we are currently developing a methodology to recover
architectural information from legacy systems. Figure 1 gives an overview of the
framework of our architecture recovery strategy.

Design Documents

Architectural
Representation 

Domain Knowledge 

Level of Abstractionlow high

tool
recovery 

Source Code
manual
recovery 

PROCESS_TELEGRAM

REC_CRC_TEL

drc

spdc ctdc dcdc

rpc_b rpc_a

drc

pmc_b
pmc_aspdc

ctdc dcdc
lodc_rec

rpc_arpc_b

SW Views Arch Elem.

Fig. 1. Architecture Recovery Strategy

The input to the recovery process are various software views from the legacy
system, for example, call graphs, file views etc. The level of abstraction of the
software views (documents, source code, etc.) is low. In a stepwise manner the
level of abstraction is raised to the architectural level. The recovery process will
be applied on a number of members of the product family. The common
architecture will be derived in a final step from the various architectural
representations.

1.2 Related Work

In reverse engineering existing systems are analyzed to identify its components
and interrelationships. The aim is to represent the system at higher levels of
abstraction. Reverse engineering is therefore an important step in the architecture
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recovery process. However, architecture recovery goes beyond the identification
of components and interrelationships [3], [4]. Architecture recovery means re-
engineering of different properties of the software system, among which are the
global control structure, the synchronization and communication protocol and
information about physical distribution and performance. In [5] a framework is
presented that integrates reverse engineering technology and architectural style
representations to recover architectural representations from source code.

Design patterns describe solutions to recurring design problems [6]. Design
patterns are a promising approach for defining a vocabulary for expressing
software design concepts. Architectural patterns provide a set of predefined
subsystems, specify the responsibilities of the subsystems, and describe rules and
guidelines for organizing the relationships between the subsystems [6].

A product line (program family) is a group of software applications sharing a
common set of features. The members of a product line share a common software
architecture and are built from a common set of components. Architecture
recovery of product lines focuses on the identification of structural commonality
among members of a program family. The architecture of a product line describes
architectural decisions inherent in each member of the program family.
Identifying, assessing and describing the common architecture of a product line
supports low-cost production and maintenance of applications [7].

1.3 Architectural Description

Software architects often use block-line diagrams for representing the architecture
of a system. Such block-line diagrams are highly ambiguous. Architectural
Description Languages (ADLs) are formal languages used to represent the
architecture of a software system so that they can be communicated to other
system stakeholders in an unambiguous way. To describe the components in our
case study , we used the Darwin language and the supporting tool “Software
Architects Assistant (SAA)” [8], [9] developed by Imperial College London. The
Darwin language is based on the π-calculus and was originally used as a
configuration management tool. This section gives a very brief introduction to
Darwin, for more information see [10].

A
IN_A OUT_A

Fig. 2. Component A

Figure 2 shows a component displayed with the help of the SAA tool. OUT_A
is the provided output port of the component. An output of a component is
defined by a white dot. IN_A is the required input of the component and is
defined with a black dot. Components communicate through ports with other
components. Component A is a compound component with two sub-components
B and C.
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B C
IN_A OUT_A

IN_B

IN_C

OUT_B OUT_C

Fig. 3. The two sub-components of component A

Figure 3 describes the two sub-components of component A. The input (IN_B)
to component B is through the IN_A port of the component A. The output
(OUT_C) from component C is through the OUT_A port of the component A.

2. The Case Study

The case study, a Train Control System (TCS) system, is an embedded real-time
system successfully in use in different countries. The TCS system forms a family
of systems that has been specialized for different national railway companies. The
members of the program family have to be maintained and further members of the
program family have to be developed in a continuous process. The case study is a
medium-size software application with around 150 kLOC (Lines of Code)
implemented in C and Assembler. The Train Control System is executed on two
different hardware platforms and is controlled by an in-house developed monitor.
Future family members may be developed for different hardware platforms and/or
different operating systems.

3. Recovering Architectural Structure

Component and connector identification is of central importance in the
architecture recovery process. Components and connectors are the basis for the
overall system structure and therefore represent an important part of the software
architecture.

A number of definitions exist for the term ‘software component.’ Gregory
Abowd defined components as “primary computations of the application” [11].
Mary Shaw defines components as “such things as clients and servers, databases,
filters, and layers in a hierarchical system.” [12] Paul Kogut gives a code-oriented
definition of components: “Components can be small pieces of code (such as
modules) or larger chunks (such as stand alone programs like database
management systems).”[13] All of the definitions were suitable for other systems
under consideration. But what are components in our specific system?

After discussing this question with developers of the Train Control System, we
agreed on a function-oriented definition. A component is a set of functions,
performing defined tasks in the system. Tasks are main requirements of the system
consisting of a set of sub-tasks.

Inherent module or component concepts are missing in both programming
languages used in the case study (C, Assembly). Component identification and
recovery in the case study can therefore not be based on language concepts.

Thus, a number of possible component identification strategies were
considered:
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File structure — Functions and data structures collected in files are natural
candidates for components since the reason for collecting functions in a file is
often functional dependency.

Diversified software — The case study is a safety critical application in which
software diversity is used to ensure fail safety. All safety critical parts of the
system are implemented by an A,B,C style. A and B is software developed by
different groups based on the same requirements, B uses however inverted data
for safety reasons. C synchronizes, distributes and votes results from A and B.
The A,B,C parts of the system are natural candidates for components.

Coupling - Coupling is the measure of interconnection among functions in a
software system. High degree of coupling between functions could be an
indication that the functions belong to the same component. Low degree of
coupling could accordingly indicate that the functions belong to different
components.

Design documentation — Design documents of the case study contain block-
line diagrams that give indication about the existing architecture. Indicators are
also the table of contents, since components are often described in subchapters.

Monitor - The software execution of the case study is controlled by a software
monitor. The scheduling approach is a modified round-robin algorithm. The
monitor tasks implement functionality that has to be completely performed within
a specific time-frame to ensure correct execution. The monitor tasks are therefore
component candidates.

The recovery work started by analyzing the design documentation. At first we
identified that the overall system consists of a hierarchy of components.
Components on the highest level were identified with help of the documentation.
The block-line diagrams and the document structure with sub-chapters were clear
indications for components. The components on the next lower level were mainly
identified by analyzing the monitor that schedules tasks that perform a specific
functionality and divide thereby the super-component into non-overlapping sub-
components. On the next lower level, components were identified based on the
diversified software principle: The A, B and C parts form according components.

The component identification process was an iterative process with a number
of processing loops and feedback rounds with the developers.

The connector identification process was therefore closely related to the
component identification process. Each component was analyzed concerning
interactions with the environment (other components). Interaction in the case
study is mainly based on shared-memory and function calls.

4. Result - The Identified Architecture

The recovered architectural information was described using the ADL Darwin.



www.manaraa.com

94      Wolfgang Eixelsberger et al.

D

T

LOS

I_channel

LOcom

O_channel

LOconScon

O_channel

LOconScon

I_channel

LOcom

Fig. 4. Components of the case study

Figure 4 shows the highest hierarchy level of the system. The components
contain again sub-components. Components are related to different hardware
platforms. The D, S and LO components are related to the same hardware
platform, the T component is related to another hardware platform. The HW-
platforms are connected through a serial link. This information is however not
expressible with DARWIN.

Components of the case study play different roles. The T component works as
a server for the D component. The D component as a client sends commands
through the O_channel and receives data through the I_channel from the server T.
Towards the S component the D component plays the role of a producer. The
connections between them are based on shared memory and function calls.
Towards the LO component, D plays the role of a server and LO is accordingly
the client.

Figure 5 describes the sub-components of component D.
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Fig. 5. The sub-components of D

The DEC and LC component are scheduled by a monitor. The connections
between the components are shared memory.

The DEC component is a fail-safe component which consists of A, B and C
components. The DEC component has therefore A and B inputs and outputs. The
A and B parts of DEC controls the T component through the LC component.
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In case further versions of the system will be developed for one hardware
platform, some of the components have to be changed or removed. For example,
components handling the data transmission between the HW platform would
disappear.

The recovery of the architectural structure of the case study led to the
following results:

− Hardware dependent components that might be subject to changes in future
family members were identified.

− Darwin and the Software Architect’s Assistant were well suited for the
identification and representation of components and connectors.

− The architecture recovery resulted in descriptions of the structural
architecture; other architectural properties such as communication protocols
or data access need to be further investigated.

− Implications on further family members became evident from the
architectural perspective on the system. We identified problems in the
overall system structure that will be avoided in future products. Typical
communication patterns were identified and will be analyzed with focus on
performance and timing constraints.

5. Future Work

Complete architecture descriptions go beyond the architectural structure
(components and connectors) and the global control structure. Our future work
will therefore concentrate on other architectural properties as the communication
protocols, the data access, the architectural style and performance aspects. Work
presented in this paper results from analyzing one member of a product line.
Other product line members will also be analyzed and the general software
architecture will be recovered. Finally, a reference architecture will be build,
consisting of a composition of generic and abstract components. The component
of the reference architecture will be replaced by ‘real’ components when the
architecture is instantiated for a real system.

6. Conclusion

Recovery of architectural information is a promising approach for gaining control
over the evolution of existing software systems. Architectural descriptions allow
reasoning about the quality of systems and will lead to reduced development and
maintenance costs.

In this paper, we presented an approach for recovery of structural architectural
information. The approach was developed while working on a real-time system
family that is successfully in use in different countries. Components, connectors
and the global control structure of the system were identified. The system
structure (components, connectors) was described using the architecture
description language Darwin together with the Software Architect’s Assistant. In
future work, additional architectural information such as the communication
protocols and the reference architecture of the product line will be recovered.
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Abstract. State transition mechanisms are widely used in software en-
gineering to implement state/event-dependent behavior. In C/C++, the
implementation of state machines using `switch/case' or `if' statements

causes problems in readability, understandability, maintainability, and
modi�cation. We have developed both a source code pattern searching
tool capable of searching for state machine occurrences and a design

pattern to replace state machines with C++ generic components. With
`ESPaRT' (Enhanced String Pattern Recognition Tool) we search for
state machines in the source code. Examples of patterns for state ma-

chine detection are given in the paper. The state machine information
is extracted and the state machine code is replaced by generic compo-
nents following the `generic Harel State Machine Engine' (HSME) design

pattern.

1 Introduction

A common and widely used technique to implement the dynamic behavior of re-
active systems|and especially embedded systems|is the use of state machines.
Depending on the current system state and incoming events issued by a source
in the environment, a well-de�ned action (sequence of program instructions) is
carried out and a new system state is set1. In automata theory, a �nite state
machine (FSM) is de�ned as a set of states, a set of events, an initial state, a set
of �nal states, and a state transition function (for the formal de�nition see [10].)
The state transition function determines for each valid pair (current state,

incoming event) the system state to switch to. The visual counterpart of state
machines|state transition diagrams|are used to model and simulate reactive

systems2.

? This work is funded by the European Commission under ESPRIT framework IV

contract no. 20477 'Architectural Reasoning for Embedded Systems (ARES)' and is
pursued by Nokia RC Finland, ABB Norway, Philips RC Holland, Imperial College,
Technical University Madrid, and Technical University of Vienna.

1 The new system state can be the same as the current.
2 Reactive systems are systems that have continually to react to events from their
environment.

 Frank v. d. Linden (Ed.): ARES ’98,  LNCS 1429, pp. 97-105, 1998. 
 c Springer-Verlag Heidelberg Berlin 1998
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As with nearly every concept, there are many ways to implement a state machine
in C/C++. The probably most common approach is utilizing the switch/case

construct3. A so-called state variable is used to store the current state. If an
event arrives, the current state is determined (using a switch/case construct.)
Then, the event is determined (using another switch/case statement nested in
the �rst) and the appropriate program code is executed in the corresponding
case block. Usually, the last statement in the case block manipulates the current
system state.
We argue, that such an implementation has de�ciencies. In general, there is no
separation of the code-parts processing the state machine (the so-called state ma-
chine engine), the state transition information and the code to be executed (the
actions.) Furthermore, there is no explicit representation of the system states,
events, and the state transition information. This can prevent a reader from un-
derstanding the dynamic behavior modeled with the state machine, especially
if the state/event space4 is large. Since readability and understandability are
an essential basis for modi�cation and enhancement of the state machine or for
reverse engineering issues, we take e�ort to identify state machines in the source
code and replace their implementation with an improved one.
Basically, such a venture has to o�er three techniques. First, we must be able to
identify state machines in the source code. We can look manually for state ma-
chine instances, use reverse engineering tools5, or apply pattern searching tools
such as `grep' or more sophisticated ones that, for instance, parse the code to
generate and use an abstract syntax tree (see [5].) Second, we have to analyze
the state machine and identify the state and event space, the state transition
function, and the actions executed at state transitions. This, as well, can be done
manually or using an appropriate tool supporting the software engineer in the
analysis task. Third, we have to replace the state machine implementation with
a more sophisticated one, which remedies the de�ciencies stated above, using
the information of step two.
For the �rst task we use our pattern searching tool ESPaRT. We present the
concepts of ESPaRT in Section 2 and explain how it can be used to detect state
machines in the source code. For the third task, we have developed a set of C++
generic components in the HSME design pattern. Section 3 gives a short survey
on the HSME components. In Section 4, we discuss the transformation process
in detail and give an outlook on an appropriate tool supporting the task. Section
5 surveys work related, in Section 6 we draw some conclusions.

2 Finding State Machines Using ESPaRT

The simplest way of �nding state machines in the source code is a manual search
using an editor. However, a tool that is supporting the search for occurrences of

3 Readers not familiar with C/C++ are referred to [7].
4 The state space is the set of all possible states, analogously the event space is the
set of all possible events.

5 A comparison of reverse engineering tools can be found in [1].
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state machines|or at least possible candidates|can speed up the overall con-
version performance. Such a tool is ESPaRT.
ESPaRT was originally supposed to �nd duplicated statements in a code (like
error handling, which often is added by a copy/paste procedure), with the re-
quirement of being applicable to source code of di�erent programming languages.
The original idea was to use the UNIX tool grep. However, some source code vari-
ations, which were the result of later changes, could not be handled by grep. In
the same way, the implementation of state machines|as high-level program-
ming concepts|can vary in many ways, making the task of searching for state
machine occurrences a non-trivial issue. To deal with variations, the Enhanced
String Pattern Search Tool was built.

2.1 How Does ESPaRT Work?

ESPaRT is based on the idea of searching for characters rather than for tokens,
i.e. the expression \if a > b then return a" will not be tokenized into \if | a
| > | b | then | return | a", but it will be taken as a sentence which
starts with an \if" and ends with an \a". ESPaRT's pattern language is based
on strings, but it is enhanced by commands, which overcome the restrictions of
regular expressions by adding features of syntactic tools. Since the programming
language Perl [9] o�ers a wide range of string manipulation functions, it has been
used to implement ESPaRT.
ESPaRT is invoked by specifying a pattern �le and the source code �les. When
a pattern is found, the line numbers and names of the �les containing the match
will be printed.

2.2 ESPaRT vs. Regular Expressions

ESPaRT is based on regular expressions, which can only be used for lexical
matching. However, regular expressions do not satisfy several requirements that
are needed to specify more complex patterns. To show the need of enhancing
regular expressions to o�er enough exibility to the maintainer of a program,
the enhancements of ESPaRT compared to regular expressions are summarized:

1. Whitespace characters have to be expressed explicitly in regular

expressions. Using tabs accordingly can improve the readability of a code.
However, in a search the amount of whitespace characters between two state-

ments has to be considered in the regular expression pattern when using a
tool like grep. ESPaRT uses a mechanism that allows the user to neglect the
amount of tabs, blanks, or newlines between two expressions.

2. Regular expressions cannot handle nested program blocks. Blocks
are considered the most basic components of high level programming lan-
guages. It is almost impossible to express a program block by regular ex-
pressions, since a block may recursively contain other blocks. Nested blocks
can be handled by ESPaRT.

99Reengineering C/C++ Source Code
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3. Variable handling is unsatisfactory in regular expressions. Though
regular expressions allow the assignment of a match to a variable, they do
not o�er more exible methods of assigning (variable) parts of a pattern to
an identi�er. In ESPaRT, these variable parts may not only be assigned to
a identi�er, but once a variable is instantiated, it may also be used later in
the pattern.

4. Regular expressions cannot handle variations of sequences. If N
statements may occur in a given order, N ! regular expressions are needed
to specify all possible variations. The SET command of ESPaRT handles
this case, because these statements only have to be listed once in the SET
command.

5. ESPaRT allows a more intuitive way of de�ning patterns. A reg-
ular expression often has to be read twice before the pattern behind the
expression can be recognized. In ESPaRT, patterns can be expressed by
writing down the sequence of code the interpreter should look for. In the
simplest case, fragments of the code could be copied into the pattern �le
and ESPaRT will look for other occurrences of this fragment.

2.3 State Machine Patterns

The problem of using search tools is to �nd the right pattern for the component
that should be found. This means that a pattern for a particular state machine
implementation will obviously not detect all state machines. In the following, an
ESPaRT pattern will be presented assuming a particular implementation.

Switch/case Implementation Many state machines are implemented using
switch/case statements. The switch statement contains the state and the case
statement possible events or vice versa.

%MATCH%

switch ($stateVar$)

$BLOCK ("{" | "}" |)$

%END%

%SUBMATCH%

case $event$ :

$BLOCK ("{" | "}" | $stateVar$ = )$

%END%

The lines shown above have to be put into a pattern �le that is interpreted by
ESPaRT. The main pattern in the pattern �le is enclosed by %MATCH% and
%END%. Additionally, a subpattern may be speci�ed to re-search the match
from the main pattern for another pattern. Such a subpattern is enclosed by
the keywords %SUBMATCH% and %END%. Once the main pattern can be
matched against the source code, the lines in the code that caused the match
will be searched again for occurrences of this subpattern.
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Pattern Description The �rst line in the main pattern de�nes a switch state-
ment that is based on a variable which itself is enclosed by parentheses. In the
pattern, this variable is represented by the ESPaRT variable $stateVar$6.
Thereafter, a block has to follow which (in C/C++) starts with \f" and ends
with \g". This is expressed by using the $BLOCK()$ command of ESPaRT that
takes three arguments which are separated by \j"s. The �rst two parameters de-
�ne the start and end delimiter of the block7. The last parameter of $BLOCK()$,
which is also an ESPaRT pattern, de�nes the contents of the block. If no third
argument is speci�ed, ESPaRT will not search the found block for a particular
content.
After the the main pattern could be matched, the lines found in the code are
re-searched for the subpattern. In our example, the subpattern consists of a case
statement that is followed by a block containing an assignment to the state vari-
able. This assignment can be seen as an important hint for a state machine.
The above pattern detects all switch/case expressions that contain a direct as-
signment to the switch variable.

2.4 Summary

The example given above does not cover all possible variations of state machines
implemented by a switch/case structure. However, this is not necessary for a par-
ticular application, because parts of the pattern can be assumed not to change
within the same collection of code. Moreover, state machines can also be imple-
mented using other control structures (such as if/else.)
ESPaRT can be used to

1. Make an assumption about the implementation of a state machine
(i.e. switch/case, if/else, assignment to a variable) expressed by an ESPaRT

pattern.
2. Check whether the assumption (represented by that pattern) can be mapped

against the code.

In applying ESPaRT several times, a collection of patterns will be created that
can be used as a state machine pattern library. As this library grows, the prob-
ability to detect a state machine without a priori knowledge will increase.

3 The `Generic Harel State Machine Engine' (HSME)
Design Pattern

HSME was developed as a design pattern to apply the visual formalism of stat-
echarts from speci�cation to implementation of reactive systems (see [10] and

6 Note, that expressions enclosed by two $ are ESPaRT expressions and everything

else are statements taken from the source code.
7 This parameters are necessary, because ESPaRT should also be applicable to other
programming languages than C/C++.
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[11].) Statecharts are an extension of the conventional state transition diagrams,
e.g. allowing the modeling of concurrent states [3].
Following the idea of component programming (see [4]), the HSME state ma-
chine engine and state transition table both are instantiations of orthogonally
designed generic components. This design o�ers some advantages: The generic
state machine engine can execute all valid state machine descriptions provided
by the user; the state transition information can be modi�ed without going into
low-level engine code; and the execution loop can be modi�ed without unwill-
ingly modifying state transition information (and vice versa.) Furthermore, to
change the engine's functionality, the engine component code has to be modi�ed
only once and then has to be recompiled with all state-machine speci�cations
concerned.
The components are C++ templates [7], so they are instantiated at compile
time. The state transition information is stored in a table which is accessed by
the state machine engine. Despite of the slightly longer execution time (table
access and call overhead) and larger code size (C++ language mechanisms), our
approach has has major advantages compared to a conventional implementation
which were already mentioned. Because of the orthogonal component design and
the template mechanism, we denote our components as `generic', meaning that
they are exible and thus can be used in changing software environments by
di�erent instantiation, not by modifying their implementation.
This is a reasonable property concerning product families, where portions of
the design of a family member are adapted to build a new one. HSME im-
proves readability|and thus|understandability (see [12]) of state machines at
the code level by explicitly representing states, events, and the state transition
information. The explicit representation and the orthogonal design facilitates
modi�cation and enhancement when building a new family member.
Considering these HSME properties, it seems reasonable to replace convention-
ally coded state machines with generic components. The transformation process
is discussed in the next section.

4 Replacing Conventional State Machine
Implementations with Generic Components

Having both a exible and con�gurable tool to search for state machine oc-
currences in the code and a set of generic components to replace the existing
implementation, we will now discuss the actual transformation process. To carry

out the replacement, we need all the information about the state machine. This
information has to be extracted from the source code in a human-driven re-
verse engineering process. The di�erent kind of information is discussed in the
following enumeration.

1. Position of the state machine in the source code. With ESPaRT,
we try to identify the location of state machine implementation parts in the
source code. We do this by applying state machine patterns presented in
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Section 2. Note, that the state machine parts can be distributed over the
whole program.

2. State variable. ESPaRT can also give a hint to the state variable, since
an assignment statement to a variable|the state variable|is usually part
of the state machine pattern de�nition.

3. State space. Then, all the di�erent states have to be identi�ed. For ex-
ample, in a switch/case construct, this can be done by examining all the case
blocks that belong to the switch statement of the state variable. All possi-
ble states should be recorded together with semantically meaningful names.
These names are used later in the HSME state transition table, providing
a better understanding of the state machine functionality when reading the
source code.

4. Event space. As a next step, the event space has to be identi�ed. The
detection of events in the source code can be di�cult, because events are
often modeled implicitly. Thus, application knowledge|such as where the
events come from or where they are issued|gives a major advantage in the
identi�cation process. As with states, all identi�ed events have to be recorded
and named.

5. State transition information. Next, the state transition information has
to be extracted. The next state is usually set by assigning a value to the state
variable. The whole action block has to be searched for such an assignment
following the call tree of all procedures invoked from the block. When no
assignment is done, the next state will be the current state.

6. Actions executed at state transitions. Finally, the actions carried out
at the single state transitions have to be identi�ed, isolated, and the state-
ments are summarized in a special HSME action function. These action
functions are called by the state machine engine during execution. The lo-
cal variables used by all the actions have to be identi�ed, since there is a
restricted scope for the statements now being encapsulated in an action func-
tion. The HSME engine provides references to those local variables during
processing.

With this information at hand, the HSME forward engineering process can be
started which is described in detail in [10]. The conventional code has to be
substituted with the resulting HSME code. Since the generic state machine
components are templates, the adapted source code has to be compiled with
a C++ compiler. This may seem as a major drawback especially concerning
e�ciency important in embedded systems. However, our experience shows that
with increasing speed and capacity of embedded system hardware many man-
ufacturers are switching to C++, trying to pro�t from C++ concepts such as
object-orientation and templates.
Of course, there is no way to guarantee that all the state machine information
has been extracted and|thus|the transformation is functionality preserving.
Obviously, a state transition diagram of the conventionally coded state machine,
for example stemming from system design information, can be valuable in the
reverse engineering process.
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Fig. 1. The ITE tool structure

To support the reverse- and reengineering process, we will sketch a tool|further
referred to as ITE (Integrated Transformation Environment)|which guides the
software engineer throughout the whole process.
In a single GUI, ITE integrates the ESPaRT tool, an ESPaRT pattern editor, a
code viewer and editor, a database for state/event/transition information, anno-
tations, and patterns, a code generator producing HSME generic components,
and an interface to a C++ compiler. Figure 1 shows the structure of ITE.

5 Related Work

A number of di�erent approaches exist that implement state machines in C/C++
using high-level language facilities. For example, a pointer to a function pointer
array can be used as the state variable. The function pointer array is called
jump table and contains references to the event handler functions. In [2], the
behavioral design pattern `State' for the object-oriented modeling of state/event
dependent behavior is presented. A similar object-oriented approach to model
states as classes can be found in [6]. The design pattern `Harel State' [10] is
based on this approach to enable the processing of statecharts speci�cations.

6 Summary and Conclusions

In this paper, we discussed the transformation of conventionally coded state
machines to generic components. Since the replacement process consists of a
number of steps and involves the management of a considerable amount of data,
tool support is essential. We discussed the structure of such a tool.
Today, the bene�ts of generic components, such as improved maintainability
and reuse, are still under discussion but recognized. Since the transformation re-
quires a reverse-engineering process that can be highly sophisticated, possibility
for automation is limited and a high amount of human intervention is needed
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throughout the process. Neglecting the pattern search, tool support can mainly
help in the process step integration, information management and organization.
Since in C/C++ state machines can be implemented in manifold and sophisti-
cated ways, the tradeo� improvement versa e�ort has to be concerned for each
case separately.
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Abstract. We describe an architecture recovery experiment performed

on a distributed software system. Our main aim was to identify those

situations in which existing reverse engineering techniques could be sat-

isfactorily applied and those situations where such techniques would pro-

duce only limited or inaccurate results. Based on this experience, we

propose ways in which these techniques can be improved.

1 Introduction

Most of the current work in the area of software architecture [12] addresses issues

related to the early stages of the software life-cycle, such as speci�cation, ana-

lysis and development. Very little is concerned with existing (legacy) systems for

which high-level architecture descriptions are usually missing or inaccurate. To

help in the process of extracting the architecture of existing software systems,

tools and techniques are being developed for architecture recovery [3, 7]. Among

other bene�ts, architecture recovery technologies can facilitate system under-

standing and maintenance, help in the identi�cation of commonalities within a

family of related systems, and also raise the possibility of reusing system struc-

ture and components in the development of new systems.

However, the usual discrepancy between code and architectural abstractions

makes architecture recovery a rather di�cult task. This task is exacerbated in

the case of distributed environments, where typical architecture elements such

as components, interaction mechanisms and con�guration are generally not ex-

plicitly supported by the underlying programming language and are therefore

di�cult to identify in a typical distributed system source code [11].

With the aim of investigating the extent to which current reverse engineering

technologies can (and cannot) be used to help understanding the architecture

of distributed software, we carried out a detailed recovery experiment on the

source code of an existing distributed software system. To verify the accuracy of

the techniques used, we analysed source code small enough to be manually and

thoroughly understood prior to the experiment, yet complex enough to highlight

many of the di�culties involved in reverse engineering non-trivial software. This
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decision allowed us to compare the results produced using existing reverse en-

gineering techniques with the abstractions that we had manually recovered, in

addition to those described in the software documentation. Based on this ex-

perience, we propose new methods through which the results produced by the

existing techniques used|and the techniques themselves|can be improved. All

techniques employed during the experiment have been implemented and integ-

rated with other o�-the-shelf tools. Together these form the basis for an approach

to the recovery of distributed software architectures that we are currently devel-

oping.

2 The Software

Our experiment was performed on the source code of ANIMADDO, a computer

animation prototype [10]. The system is based on the client/server architectural

style and written mostly in C, with a single utility class in C++, under an

UNIX environment. Despite being relatively small, roughly 3,000 LOC, the soft-

ware presents a non-trivial complexity: �ve independent executable components

(namely interexpserv, egesp, fred, collision and control) communicat-

ing through message exchange (implemented via UNIX sockets) and event no-

ti�cation (implemented via exchange of process signals). interexpserv stores

all information regarding the animation process which is initially provided by

the user in the form of an animation script. This component acts as the sys-

tem server, accepting requests from the other components (or clients) to read or

update the state of one or more animation objects. At each animation step the

system updates the state of all objects and outputs the new states as an updated

animation script. The set of all animation scripts generated this way can then

be displayed by some compatible visualisation tool.1

The architecture of ANIMADDO, exactly as given in its documentation, is shown

in Fig. 1. This architecture was veri�ed to be accurate during our manual inspec-

tion of the code, and hence was used as our expected architecture with regards

to the results to be produced by our techniques. In the following sections we

describe several types of \high-level" abstractions or views that we were able to

extract from the system source code during the experiment.

3 Modules and Subsystems

The system source code is spread over 8 header �les and 11 source �les or mod-

ules. As we are primarily interested in recovering system components as units

of execution, we statically extracted information about all functions that each

module de�nes and in which other modules those functions are called. This in-

formation revealed the system (static) inter-modular activation graph which is

1 Due to space restrictions, in this paper we omit the description of the functionalities

of the other components and report only on the issues related to recovery of socket-

based interactions.
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Fig. 1. Architecture of the ANIMADDO computer animation system.

graphically represented in the module view depicted in Fig. 2(a). Since there are

many more modules in the source code than components in the documented ar-

chitecture, it is clear that modules are concepts not yet in the appropriate level

of abstraction to be considered as representing system components. One way to

assign modules to higher-level concepts is by clustering them into subsystems.

Among the many clustering techniques for subsystem classi�cation that have

been proposed in the literature, the technique proposed in [1] seemed to be the

one that more closely satis�ed our need for recovering components as high-level

units of execution. In this technique, program units are clustered into higher-

level units based on the concept of node dominance on the system activation

graph. The technique can be applied to produce clusters of two types: one rep-

resenting clusters containing units that would be part of the implementation of

a more general system functionality, which we call here entry subsystems, and

one representing clusters containing units that would be providing resources to

other clusters, which we call library subsystems.

We implemented a modi�ed version of this clustering technique and applied

it to the system inter-modular activation graph. Six subsystems were identi�ed

and are represented in the subsystem view shown in Fig. 2(b). The subsystem

containing only the message module is a library subsystem, and the other �ve

ones are all entry subsystems. The e�ectiveness of this particular subsystem

classi�cation technique can, to some extent, be con�rmed considering knowledge

speci�c to the application domain. For example, routines provided by the stack

and parser modules are clearly used by inter for interpretation of animation

scripts. However, subsystems only partially match the abstractions described in

the system architecture. For instance, we can associate code to components (the

modules clustered inside each entry subsystem) but we can not say anything

about servers, clients or message-based interactions. As a matter of fact, when it

comes to architecture recovery, this mismatch between (recovered) code entities

and architectural abstractions is the major obstacle faced by most traditional

reverse engineering tools which rely only on structural software information.
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Fig. 2. The (a) module and (b) subsystem views.

4 Architectural Abstractions

Abstractions used in typical architecture descriptions vary substantially from

one application or system domain to another. The identi�cation of such abstrac-

tions in the system source code therefore requires some sort of previous domain

knowledge (e.g., knowledge regarding the application, programming language

and execution platform) stating how they are expected to be implemented. Two

recent tools, ManSART [4] and ART [2], have started to address this issue in a

fairly similar fashion [8]. Domain knowledge is expressed in the form of an ar-

chitectural style library which contains information about several architectural

styles and their elements, i.e., components and interaction mechanisms. This

information includes a description of program patterns or clich�es [9] through

which some architectural elements are expected to be implemented in a tradi-

tional programming language. A search engine then attempts to match a given

pattern against portions of the abstract syntax tree (AST) generated from an

existing system source code.

During our experiment we implemented a similar mechanism on top of a Pro-

log environment. The AST representation, pattern notation and search engine,

as well the clustering technique described in the previous section, all are imple-

mented as Prolog predicates.2 Figure 3(a) shows an example of an architectural

pattern speci�ed in our Prolog-based notation. This pattern states how the cre-

ation of a server-side socket is expected to be implemented under the C/UNIX

domain using AST structural and traversal constructs.3

2 In addition to the Prolog environment, we also use other o�-the-shelf tools such as

program analysers for parsing and source model extraction, and an automatic layout

tool for graphical visualisation of recovered elements.
3 Our pattern notation follows the notation used in ART which is in turn based on the

formalism proposed in [5]. In contrast to ART, our notation does not (yet) support

constraints expressed in terms of data/control ow links between statements.
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socket opening(SockId,CSockId) :-

%%%%% server socket creation %%%%%

fun call(SCall,"socket",[Domain,Type, ]),

assign(ASock,SockId,SCall),

%%%%% machine port set up %%%%%

member ref(MRef,ServAddr,PortMember),

obj name(PortMember,"sin port"), int server socket(int *port)

assign(APort,MRef,PortVal), f ...

%%%%% socket binding %%%%% sock = socket(AF INET,SOCK STREAM,0);

fun call(BCall,"bind",[SockId1,ServAddr, ]), ...

%%%%% listening for connections %%%%% server.sin port = 0;

fun call(LCall,"listen",[SockId2, ]), if (bind(sock,(struct sockaddr*)&server,

%%%%% accepting connection %%%%% sizeof(server)) < 0)f
fun call(ACall,"accept",[SockId3, , ]), /* error ... */

assign(ACSock,CSockId,ACall), g
%%%%% pattern constraints %%%%% ...

same obj([SockId,SockId1,SockId2,SockId3]), *port = ntohs(server.sin port);

before([ASock,APort],BCall), return sock;

before([LCall],ACSock). g

(a) (b)

Fig. 3. Example of (a) an architectural pattern described in Prolog and (b) a corres-

ponding code fragment in the message module partially matching the pattern.

4.1 Searching for Code Patterns

We initially searched for this and a similar pattern describing the creation of

a client-side socket. The results were two matches (one partial match and one

full match) in the message module and one partial match in the inter module.

Matches in message correspond to the initial creation of a server socket, as

shown in Fig. 3(b), and a complete creation of client socket, respectively. The

partial match in inter corresponds to a server socket waiting for and accepting

client connections. We also searched for other possible variations for those two

patterns but no reference to a function responsible for socket creation was found

in any other module. From those three matches alone we can at best say that

two sockets (of types server and client) are created in the message module, and

that another server socket is possibly created in the inter module. No strong

conclusion can be reached as to whether or not, for instance, sockets are created

in other modules that could be associated with the implementation of clients

such as control and fred. This situation is a typical example of the limitations

of pattern-based approaches whose patterns are de�ned independently of the

domain where they are used, as it is the case for ManSART and ART.

Clearly, the problem with those approaches is that they search for archi-

tectural abstractions without taking into account application speci�c domain

knowledge. For example, from the subsystem view shown in Fig. 2(b) we know

that the message module is actually a library providing resources to other mod-

ules. Since two types of sockets are created in this module, it may be that sockets

are created in the other subsystems not only by means of the socket and related

calls, as it is expected when only knowledge about the C/UNIX domain is con-

sidered, but rather by calling functions responsible for socket creation de�ned in

the message module.
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In order to check this hypothesis we augmented the client and server pat-

terns to also include references to the server socket and client socket func-

tions provided by the message module. A second search for these \re�ned" pat-

terns con�rmed that all entry subsystems do create sockets by calling either

server socket or client socket. In this case, we can say that the message

module is actually part of the implementation of the system infrastructure rather

than the implementation of one of the system components. This distinction is

important because code associated with the system infrastructure generally im-

plements routines for components instantiation and connections and is mostly

platform-dependent. On the other hand, code associated with components them-

selves is where the system behaviour is actually implemented and is (supposed

to be) less dependent on platform-speci�c communication mechanisms. Thus,

explicitly separating components and infrastructure code could be a signi�cant

contribution to facilitating system understanding and code reuse.

4.2 Components

The identi�cation of code related to sockets creation �nally allows the repres-

entation of the software under analysis in terms of architectural (rather than

source code) abstractions. The �rst of these abstractions are components, which

we represent following a notation similar to the graphical notation of Darwin [6],

an architecture description language speci�cally created to describe distributed

systems structure.

In our notation, each component encapsulates an entry subsystem and has

an explicitly de�ned interface describing services that the component provides

or requires. Services correspond to interaction channels (sockets, in the current

experiment) created within the subsystem encapsulated by the component. Each

service is associated with the respective code fragments implementing creation or

use of its underlying interaction channel. Figure 4 shows how the interexpserv

component is graphically represented according to this notation. In this view,

the component is represented by a round-cornered rectangle and its service by

a �lled circle located at the component borderlines (which in turn represent the

component interface). The �lled circle means that the service is a provision, while

an empty circle would mean a requirement. The source code units encapsulated

by the component are represented by straight boxes inside the component's

rectangle. Arrows represent \uses" relations between source code units. A bold

line between a service and a code unit indicates that the code unit contains one

or more code fragments creating or using that service. This explicit association

of services to code units is important in that it bridges the gap between code

and architectural abstractions and makes it easier to understand and visualise

how a component implements a service it provides or uses a service it requires.

Although in this particular view a service is only associated with modules, this

association could be further re�ned to show how the service is implemented in

terms of lower-level abstractions (e.g, function calls or even code fragments).

111An Experiment in Distributed Software Architecture Recovery



www.manaraa.com

parser

stack

table

inter

Fig. 4. The (recovered) interexpserv component.

4.3 Interactions

When an interaction channel is created by a component, the other potential users

of that channel, besides the creator itself, can only be identi�ed|if at all|by

a careful analysis of the arguments passed to and returned from the calls re-

sponsible for the channel creation. In the case of sockets, the main parameter to

be analysed is the machine port which is assigned to each socket created.4 From

Fig. 3(b) we can see that server sockets created by the function server socket in

the message module have their ports automatically de�ned by the system. This

happens because the port number parameter (the �eld sin port) is set to zero

before the socket call. The actual port number, the one given by the operating

system, is assigned to the incoming parameter of server socket. This para-

meter is used to return the actual port number to the caller of server socket.

In the case of a client socket, the port number is taken directly from one of the

incoming parameters of the function client socket. The port number returned

by server socket is used only once, as a parameter for a fprintf call in the

intermodule. Inspection of modules which call client socket showed that the

value assigned to the port number parameter is always \atoi(argv[counter])",

which means that the actual value is provided as an argument to the shell com-

mand which invokes the client program. Since no constant value can be identi�ed

in the code for any socket port, it is not possible to determine which sockets are

connected to which other sockets. We are left to conclude then that information

regarding interactions between ANIMADDO components is not totally represented

in the source code and therefore cannot be recovered without considering some

other non-code source of information about the system.

In view of the mechanism that the system implements to establish its sockets

connections (i.e., port numbers passed as arguments to invocation commands),

one potential candidate for such a non-code artifact would be UNIX shell scripts.

No shell script is included as part of the ANIMADDO distribution package however.

We raised this issue to one of the system's original developers and we were

told that their original intention was to have the user him/herself manually

con�gure the system. Their informal \script" is to �rst invoke interexpserv

4 The hostname parameter indicating the machine where a server socket was created

is also important, but we have deliberately omitted it from the current discussion

for brevity.
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which automatically outputs the port numbers assigned to each server socket

created|this explains the port number value returned by the server socket

function being immediately passed to a fprintf call in the inter module. Each

of these numbers can then be manually passed as the port number argument

to the invocation of each client. This manual con�guration procedure, albeit

informal, is a crucial system artifact that con�rmed the accuracy of the system's

documented architecture.

5 Conclusion

This paper has described a controlled experiment performed with the aim of

investigating the di�culties involved in the recovery of distributed software ar-

chitectures. Although the experiment was restricted to a single and relatively

small system, we believe that the characteristics and complexity of the software

analysed provided us with interesting insights into the architecture recovery

process as a whole. For example, although we recognised that it is important

to identify architectural patterns in the code, it is equally important to identify

whether matched code fragments can be associated with the implementation of

a system component or with the implementation of the system infrastructure.

Another insight is that the identi�cation of potential system con�gurations, in

terms of connections that might be established between components, can be

more di�cult than identifying components themselves. Also of interest was the

con�rmation that the analysis of non-code artifacts, even informal ones, may

play an important role during the recovery process.

We are currently reorganising the techniques used in the experiment to form

a new approach for the recovery of distributed software architectures. We then

plan to perform further experiments to verify the applicability of this approach

on systems of varying characteristics and sizes. With further experience, we

expect to revise and improve our techniques and tools.
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Abstract. The increasing interest in the software architecture of systems stems
from the need to generate product families, to facilitate the reuse of
components, to better understand systems and to redocument them. This paper
introduces our approach to recover and describe a system's architecture:
different aspects of a system (i.e. architectural properties) are recovered and
then described. The recovery process focuses on architectural properties, such
as safety and variance and their description, but not on the recovery of a
complete system's architecture. Such a property-driven recovery allows to
incrementally investigate those aspects of a system that are of special interest
for the recovery purpose. Additionally the paper presents our architecture
recovery framework and process, and an example illustrating the applicability
of our framework.

1 Introduction

The work on software architectures developed out of design abstractions and high-
level structural descriptions of software systems. Currently, there is no clear
distinction between what is referred to as high-level design and software architecture.

Software architecture has been approached from different directions: architecture
definition (e.g. [7], [13], [14], [17]), architecture description (e.g. [10], [15]), domain-
specific software architectures (e.g. [16]), architecture development environments
(e.g. Aesop [6] or Darwin [12]), architecture description languages (e.g. [11]), and
also architecture recovery (e.g. [4], [8], [18]).

We define software architecture on the basis of architectural properties that are
beyond design descriptions and usually not explicitly represented in a design.
Properties, such as safety can be described by a set of implementation techniques (e.g.
redundancy, checksums, etc.). The identification of architectural properties is a key
issue in the process of architecture recovery. This approach proved to be especially
helpful in recovering the architecture of the TCS (Train control system) case study
                                                          
* This work was supported by the European Commission within the ESPRIT Framework IV
project ARES (Architectural Reasoning for Embedded Systems).
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because it is easier to recover architectural properties seperately. As a result, we
defined architecture recovery as the recovery of architectural properties and their
associated architectural descriptions that are relevant to a specific system.

The paper is organized as follows. In Section 2 we give a short description of the
case study examined. Section 3 introduces our architecture recovery framework.
Section 4 describes the architecture recovery process based on architectural properties
and gives an illustrative example. Finally, we give some concluding remarks and an
overview of future work.

2 Case study: Train Control System (TCS)

The Train Control System represents an embedded software system implemented in C
and assembler to check signal information for speed control of locomotives. The
signals are received via the antenna of the locomotive and processed by TCS.

The main system characteristics of TCS are: safety and fault-tolerance, embedded
real-time system, two programming languages (C, Assembler), different development
and target environments, and represents a member of a family of systems. The code
size of the recovered part is approximately 150K LOC (Lines of Code) of C.

3 The Architecture Recovery Framework

In this section, we describe our architecture recovery framework. Architecture
recovery is defined as the recovery of all architectural properties and their associated
architectural descriptions that are relevant to a specific software system.

First we present architectural properties and their categorization. Then we give an
overview of architectural descriptions and discuss their applicability to different
architectural properties. We continue the presentation of the framework with a
discussion of architecture recovery methods and tools.

3.1 Architectural Properties

We view software architecture as a set of architectural properties that influence and
limit the degrees of freedom in the design process.

An architectural property (AP) represents a specific design decision related to a
functional or non-functional requirement, and may be described using different
architectural descriptions. Each architectural property is realized by a set of
implementation techniques in the software system (e.g. redundancy, hardware tests,
time-outs, or checksums for the architectural property “safety”)

The investigations of the case study revealed several architectural properties that
were not explicitly expressed in the design. We generalized the architectural
properties and completed them with other related properties not originally found in the
case study. Finally, we came up with the following categorization of architectural
properties:
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1. Information exchange
2. System control
3. Dynamic behavior
4. System structure
5. Safety
6. Security
7. Variance

Note that this categorization is not complete and might be extended.
The examples given for the implementation techniques result from recovering the

architecture of TCS and do not represent a domain-independent description of
architectural properties. An example for the resulting categorization is shown in Table
1 for the architectural properties safety and variance.

Table 1. Categorization of architectural properties

Architectural properties implementation techniques
safety type of safety fail-stop

fail-operational

safety mechanisms redundancy (dynamic/static)
hardware tests (runtime/startup)

time-outs
checksums

variance type of variance standards
customer need

hardware platforms

implementation defines, files, variables
run-time/compile-time

A more elaborate description of the architectural properties and the related
implementation techniques as well as examples from the case study can be found in
[2].

3.2 Architectural Descriptions

Each architectural property can be described using one or more notations. For
example, implementations of the architectural property “information exchange” could
be described using a component/connector description type, or an architecture
description language (ADL). There is no single view or notation that is best suited for
a particular architecture description. There may be advantages or disadvantages of one
architectural description over the other: the best suited description of an architectural
property is system dependent and has to be determined by the system architect.

3.3 Architecture Recovery Methods

Architecture recovery methods may be appropriate for one or more specific
architectural properties. From our experience with the case study we concluded that
there exists no single method that is best suited for the recovery of all architectural
properties. Furthermore, an architecture recovery method may be appropriate and
well-suited for one system, but this may not be the case for another system. For our
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architecture recovery framework we provide a list of methods to recover each of the
previously defined architectural properties. For the architecture recovery of TCS we
applied:

code browsing (manual/tool-supported),
reverse engineering tools (to recover different software views) [1],
additional tools (ImagParse, ParDsp, which are self developed tools to recover
specific information from other sources [3]),
view integration and combination (to generate extended and new views from
recovered software views) [3],
the “Hot-spots” technique (a combination of reverse engineering tools and
application domain knowledge) [5], and
the “ESPaRT” tool (for recovering similar string patterns in the source code) [9].

For the architecture recovery process of the case study, the following system
information was available: source code, system documentation, domain knowledge,
and application specific knowledge.

4 The Architecture Recovery Process

In this section, we present the principles of our framework and—based on these
principles—the architecture recovery process.

4.1 Principles of the Framework

From the experiences of the architecture recovery of the TCS system we developed
our architecture recovery framework. We base the framework on the following
principles:
Architectural properties: We recover architectural properties, since:

architectural properties are manageable units for architectural reasoning.
there is no single view that describes a software architecture completely, and
it is easier to recover the software architecture of a system in parts (separation of
concerns),

Architectural descriptions: We use more than one architectural description because
there is no single view or notation that is best suited for a particular software
architecture description (see Section 3.2).
Recovery methods: There exists no single method that is best suited for the recovery
of all architectural properties. We suggest to choose the best-suited method from a list
of methods (see Section 3.3). The method to choose depends on:

the architectural property to identify and recover, or the missing relationships to
recover.
the available system information,
the task: identify and recover an architectural property, or recover missing
relationships to build an architectural description, and
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Case study: Depending on the case study different architectural properties are of
interest, different architectural descriptions are required, and the system information to
recover the software architecture vary.

4.2 Architecture Recovery Process

The following describes the architecture recovery process (see Figure 2):
I. Select candidates of architectural properties

A. Identify architectural properties (AP) that are of interest for the recovery
B. Use Table 1 to find implementation techniques associated to AP´s
C. Select candidates for architectural properties and related implementation

techniques based on system information of the system under study (Case study)
II. Identify architectural properties in the system (Identify & recover AP (X))

A. Choose an appropriate method for each implementation technique to identify it
in the system based on the available information (M)

B. Search for the implementations representing the architectural properties using
the recovery methods

C. Add additional implementation techniques that are directly found in the system,
and were not candidates (as said before, our list of implementation techniques
as well as architectural properties may be incomplete)

D. Recover the implementatios of the architectural properties, and thus the AP´s,
identified in B) and C), from the system

E. Put identified and recovered architectural properties into the set of architectural
properties of the system (AP (X))

III. Choose appropriate architectural description(s) for the architectural properties
found from AD

IV. Build the architectural descriptions of the APs identified (Build AD (X))
A. Choose an appropriate method (M) for each AD to recover the missing

relationships and to build the AD based on the information available and the
architectural description to recover

B. Build the architectural description(s) of the system (AD (X))
The recovered architectural properties (AP (X)) and architectural descriptions (AD
(X)) are denoted as the software architecture of the system X (System X´s architecture)

4.3 An Architecture Recovery Example

The following provides an example of a recovery process using our architecture
recovery framework:
Step I.: We identify the architectural property “safety” as one of the essential parts of
the system, because TCS is a system for automatic train control which has to be
realized with various safety features.

For this example we are only interested in the “safety mechanisms” (see Table 1).
We used Table 1 to find the associated implementation techniques for this property.
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The next three steps are only examplified by the implementation of “redundancy”, but
are essentially the same for others.

Case study AP (X) AD (X)

ADMethods

M 1 M 2

AD (X)
Build

AP

Identify &
recover
AP (X)

System X’s architecture

Fig. 1. Architecture recovery process

Step II.: Before we choose an appropriate method to find the implementation of
“redundancy” that represents the architectural property “safety” we identify what
information is available to find this property.

The available information states that the following parts specific to the redundancy
implementation have to be found in the source code:

redundant parts (e.g. functional parts, data structures, algorithms) and,
additionally,
either a component representing a “voter” in case of static redundancy,
or a component that monitors the occurrence of errors and a watch-dog timer in
case of dynamic redundancy.

To find redundant parts we used the capabilities of reverse engineering tools to
identify similar functions and variables. In the case study it turns out that the naming
conventions already hint at redundant parts (almost identical names with different
prefixes for files, functions, types, and variables). After studying these parts we
identified that the system uses static redundancy based on 2-version programming
(functions and variables) and a voter which in this case performs comparisons.
Step III.: After identifying the implementation of “static redundancy” and thus a part
of the AP “safety,” an architectural description for the property has to be chosen.
Possible architectural descriptions for this architectural property are, e.g. textual (e.g.
descriptional text, tables) or graphical (e.g. system structure) descriptions. We choose
a graphical description: a simple boxes-and-arrows diagram that shows a simplified
data flow diagram. The reason for this choice is that it shows additional parts of
interest.
Step IV.: To recover the data flow diagram we again choose a reverse engineering
tool. By browsing the source code we build the data flow diagram (see Step II.)
around the recovered types of functions (functions of the same type called in sequence
were grouped together) and by adding information about data usage.

120 Berndt Bellay and Harald Gall



www.manaraa.com

5 Summary and Conclusions

In this paper, we described our approach to software architecture based on
architectural properties and a framework to recover and describe a system's
architecture based on reverse engineering technology. The result of this architecture
recovery process are the systems's architectural properties and their architectural
descriptions. These architectural properties and their descriptions represent the
architecture of a specific system.

By basing the software architecture on architectural properties, the architecture
recovery process benefits from separation of concerns: architectural properties are
manageable units for architectural reasoning; it is easier to recover the software
architecture in parts; different views and different recovery methods can be used
depending on the property to be recovered.

The current architecture recovery framework supports the task of recovering the
architecture of single systems. A further step will be to extend the framework to cope
with several members of a product family to recover their family architecture.
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Abstract. In many respects it is easier to formulate an architecture
for a family of products if one assumes that the systems are being
developed from scratch.  But the vast majority of systems
development efforts today start from a cornucopia of legacy
systems. Significant progress in component-based architecture,
system understanding, object-technology, and net-centric
computing now makes it possible to evolve these legacy systems to
a state in which they exhibit many of the characteristics of product
lines. Systems in well-established domains are migrating to
distributed object systems that exhibit large-scale reuse from a core
set of assets while keeping the legacy systems largely intact.  Many
of these systems have evolved without overtly using product line
terminology or practices and have been off the radar screen of the
product line community as a starting point for product families.
The advocates of product lines need to recognize this “distributed
legacy evolution model” as an integral part of their practices for
developing information systems.

1. Introduction

Legacy systems have usually been thought of as an albatross rather than an asset
when it comes to evolving to more modern, productive, and useful systems.
Software developers and software researchers have tended to focus their attention
on “better, cheaper, faster” ways to build new systems rather than on evolution
paths for heritage applications.  They were justified in this focus since the
stovepipe systems built in the past were virtually intractable in the face of
available program understanding and integration technology.  The emphasis on
component-based architecture and product lines has clearly raised the state of the
practice for developing new systems from scratch, but has contributed far less to
the practice of evolving legacy systems.

The bad news is that there are few developments today that have the luxury of
starting from scratch because of the huge investments in, and reliance on, legacy
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systems.  The good news is that there are new technologies and practices that
make the migration path more tractable.

One of the reasons that the situation is changing so rapidly is the emergence of
integrating infrastructures.  With improved integration we have seen the the
World Wide Web (the Web) and electronic commerce flourish.  Where once
information systems were isolated and difficult to access, they can now be
accessed using the Web and its interfacing software.

The Internet is being used in a number of innovative ways to connect users and
their stovepipe systems both inside organizations and between organizations.
Within organizations, the Web is not only being used to connect departments such
as marketing, sales, and engineering, but also to connect teams of software
developers around the world working around-the-clock on the same project.
Between organizations, the Web is being used to connect businesses with their
suppliers and their customers.  It is becoming a medium for placing orders,
receiving delivery, and checking status.

There are many ways of evolving to product lines.  Regardless of the starting
point, the goal is to develop higher quality systems, faster, with higher
productivity and improved efficiency.  Product lines accomplish this goal by
facilitating the systematic reuse of software assets.  The emphasis is on strategic,
coarse-grained reuse that leverages models, architectures, designs, documentation,
testing artifacts, people, processes, and implementations.

The leverage of product lines is that software assets can be reused in different
contexts.  The cost of producing consecutive systems with the same asset base
decreases over time.  The domain model is reused from one application to the
next and the productivity of the software development staff increases
proportionately and hence the assets have a greater return on investment over
time.

On the other hand, unintegrated (stovepipe) software assets that are not used
for continuous production of additional assets become stale and require more and
more resources to maintain them.  Hence their value may decrease over time and
eventually there may be more cost associated with their continued maintenance
than benefit from their continued use.  At that point the software becomes a
liability with no leverage.  Until recently this was the end of the story.

Now, it is becoming possible to leveraging software assets either at conception
of the development of a product line or after the fact by extracting the necessary
components from existing legacy assets.  New product starts should plan for this
reuse of software assets in advance.  In fact, some plans for product lines arise out
of expediency when it becomes apparent that the resources are not available to
construct two similar systems without exploiting commonality [3].  A priori
development of systems using a product line practice approach is an active
research area and deserves continuing attention.  For example see [1].  But the
substantial contributions to migrating stovepipe legacy systems to product lines
have gone largely unrecognized by the product line community and needs further
attention.

We take the position that starting a product line effort with legacy assets is not
only possible, but is in most cases preferable to starting from scratch.  We posit
that this leveraging of legacy assets is enabled through the convergence of a set of
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practices that we try to illuminate at a high level.  We make our case by
elaborating on a distributed legacy evolution model [10] with the following
components:
• an enterprise approach for guiding decision making for system evolution,
• developing a technical understanding of systems at a high level of

abstraction,
• using distributed object technology and wrapping for system evolution, and
• using network-centric computing for system evolution.

We also present credible evidence of progress and experience that supports this
approach.  While the range of application for these ideas may not include all
classes of systems (real-time embedded applications may be one such exception),
we believed that applicable scope is quite broad.

2. Using an Enterprise Approach for Decision Making

System evolution and technology insertion do not take place in a vacuum.  Many
attempts at evolution and migration fail because they concentrate on a narrow set
of software issues without considering the broader set of management and
technical issues. Evolution takes place in the context of an organizational setting
that varies considerably in terms of the culture and the readiness to incorporate
change.  While there may be many complex technical problems that are largely
unprecedented, a focus on the technical problems to the exclusion of the
enterprise problems is a recipe for disaster.  Hence it is crucial to plan for change
in the context of the enterprise.

The Software Engineering Institute has developed an “Enterprise Framework
for the Disciplined Evolution of Legacy Systems [2] as a guide for organizations
planning software evolution efforts, such as migrating legacy systems to more
distributed open environments.  This framework draws out the important global
issues early in the planning cycle and provides insight and guidance for a
disciplined evolution approach.

In addition to the software engineering and technology considerations, the
enterprise approach addresses the needs of the customer, the organization’s
strategic goals and objectives, the operational context of the enterprise, as well as
the current legacy systems and their operational environment.  It recognizes the
central importance of both software engineering and systems engineering (and
their interplay) to the system evolution initiative.  The seven elements of the
framework are the organization, the legacy system, the target system, the project,
systems engineering, software engineering, and technologies.

These elements are applicable to a wide class of system evolution initiatives.
In practice, the specific composition of the framework and their interrelationships
are a function of the enterprise, its culture, and its management and technical
practices (lifecycle activities, processes, and work products that are used to carry
out the tasks described in the project plan and migration strategy).



www.manaraa.com

126      Nelson Weiderman et al.

3. Developing High-Level System Understanding

Program understanding is the (ill-defined) deductive process of acquiring
knowledge about a software artifact through analysis, abstraction, and
generalization [5].  Clearly, program understanding is a prerequisite for software
evolution.  However, we assert that the nature of program understanding should
change from an understanding of the internals of software modules (white-box
reengineering) to an understanding of the interfaces between software modules
(black-box reengineering).  A more detailed explanation of this approach can be
found in [9].

Understanding is critical to our ability to evolve unproductive legacy assets
(e.g., obsolete, overly-constrained, or stagnating components) into reusable assets
that can contribute to a product line approach.  Legacy assets may be aging
software systems that are constructed to run on various obsolescent hardware
types, programmed in obsolete languages, and suffer from the fragility and
brittleness that results from prolonged maintenance.  As stovepipe software ages,
the task of maintaining it becomes more complex and expensive and the asset
becomes more of a liability than an asset.  While bottom-up program
understanding has its place, it is often the case that software and system engineers
spend inordinate amounts of time trying to reproduce the system’s high-level
architecture from low-level source code.

Legacy code can be difficult to understand for many reasons.  It may have been
created using ad hoc methods and unstructured programming.  It may have been
maintained in crisis mode with no updates to the higher-level documentation.
There may be little or no conceptual integrity of its architecture and design.  But
every system has an architecture even if it is not written down.  It is this
architecture and high level understanding of the structure of the legacy system that
must be the focus of a program understanding effort.

Program understanding is a relatively immature field of research in which the
terminology and focus are still evolving. Tilley and Smith [5] describe three
promising lines of research: investigating cognitive aspects, developing support
mechanisms, and maturing the practice.  Each of these lines should be tailored to
a high-level, white-box form of program understanding necessary for more rapid
and cost-effective migration.  Evidence that the high-level understanding
approach bears fruit is given by the examples cited in Section 6.

4. Distributed Object Technology and Wrapping

The approaches for software evolution of legacy systems are being dramatically
changed by distributed object technology and wrapping [8]. Traditionally, the
approach taken to legacy systems reengineering has been to understand the
system's structure and to extract its essential functionality so the whole system or
a series of pieces of the system could be transformed into a more evolvable
system over the long term. But distributed object technology is changing the
nature and economics of legacy system reengineering.
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Traditional reengineering is based on "deep" program understanding and
reverse engineering. The cost/benefit ratio of this approach is staying the same in
the face of new technologies such as CORBA, Java, and the Web because deep
understanding is linear relative to the size of the program and the new technology
provides no additional leverage.  However, the benefits of "shallow" interface
understanding and component wrapping using these distributed object
technologies is rising rapidly relative to the replacement cost. As a result, the
economic balance is changing from traditional transformation-based
reengineering to wrapper-based reengineering [9]. These economic factors are
having a significant impact on many organizations struggling with modernizing
their systems.

Component-based architecture and product lines are concerned with design
abstractions for system-level structure. By “system-level” we mean something
larger than a single computer program. The significance of making distribution
extensions to OT is that software designers and maintainers have at their disposal
the means of expressing abstract system designs and, more importantly, have tools
for quickly fabricating working versions of these designs. That is, there is a more
direct path now than ever before from abstract architectural concepts to concrete
implementation of these concepts using DOC.

5. Network-Centric Computing

As is evident from the examples cited in the next section, the Net
1

 is causing a
“sea change” in both the nature of enterprise applications and development
methods used to create them.  There are clear and well-documented major trends
toward electronic commerce and network-based development and collaboration.
The use of the network has expanded far beyond e-mail and access to vast
information sources.  It has become a universal medium for information exchange.
The value of the Internet to software engineering and systems development must
be recognized and exploited.  The promise of product line development for
distributed legacy evolution will not be achieved until this medium is used more
effectively.

The influence of network-centric computing (NCC) on software evolution can
be summarized in three words — universality, ubiquity, and access.  Universality
is provided by portable executable content, such as Java applets, which runs on
multiple platforms and operating systems.  Making established user interfaces,
such as web browsers, available on almost any client provides ubiquity,  Making
vast quantities of corporate data, which previously were inaccessible in
mainframe-based databases available on the Net to the ubiquitous client software,
provides accessibility.

One of the primary drivers of NCC is economics.  Because applications and
data are downloaded from servers on demand, there is a potential reduction in the

                                                          
1

 The term Net as used here includes the Internet (the global computer network), intranets
(local networks that are usually isolated from the Internet by a firewall), and extranets
(extensions of an intranet into the Internet in a secure manner).



www.manaraa.com

128      Nelson Weiderman et al.

cost and complexity for system administrators in managing a corporate network
[6].  Maintenance can be done at one central location rather than at thousands of
sites in the organization, thereby reducing total cost of ownership (TCO).  The
tradeoff is that the end-users lose control and customizability of the local
machine.  However, they may gain significantly by increasing their productivity in
their primary tasks by not being responsible for application installation, system
administration, and troubleshooting tasks.  Thus, NCC leverages system
administration resources.

NCC can also leverage software assets in a number of ways by making them
available over the Net.  In its simplest form, just the user interface might be
changed.  Instead of accessing the enterprise database through an idiosyncratic
user interface, the database can be accessed through a network browser.  This
transition has been accomplished many times by many organizations and, by now,
should no longer be considered a high-risk, unprecedented form of software
evolution.  Many enterprise-wide intranets have taken this approach without
significantly changing the underlying software base.

The next level of complexity involves partitioning the application into separate
components so that the new version of the system can operate in a client/server
manner.  Once this step has been taken, the software is more free to evolve the
individual parts into a reusable set of components that can provide the basis for a
product line.  In the first case (changing the interface) the business benefits from
the universality, ubiquity, and access, but does not reap the rewards of Business
Process Reengineering (BPR).  In the second case (restructuring), the leveraging
of assets and return on investment becomes paramount.

6. Examples of Successful Legacy System Evolution

One example of a successful legacy evolution is Wells Fargo Bank’s online
electronic banking system. Wells Fargo started offering real-time access to
account balances via the Web starting in May 1995 and has expanded those
services since then to include transferring funds, seeing cleared checks, examining
credit card charges and payments, downloading transaction files, requesting
service transactions, and paying bills [11]. The system has 100,000 enrolled
customers and was handling 200,000 business object invocations per day as of
early 1997 [7].

Wells Fargo has accomplished this by leaving their legacy systems largely
untouched while adding the CORBA middleware to create a three-tiered client
server system. The “customer” object and the “account” object allow the
definition of a customer relationship whereby the client can first get all
information about the customer’s relationship with the bank and then, for each
account owned by the customer, get the relevant summary information. Wells
Fargo found that the key to enabling reuse of legacy systems was in having,
maintaining, and sharing a well-architected enterprise object model.

The centerpiece of each monthly issue of Distributed Object Computing
(DOC) magazine is a deployed case study such as Wells Fargo.  They describe the
development, the business case for building and deploying the application, the
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laundry list of technology used on the project and, when available, the staffing
and deployment information.  In their first eight issues, they have featured a web-
based banking system, an airline reservation system, a criminal justice suspect
index system, a newsmedia system to provide personalized news and digital
content, a 911 emergency response system, a management information system for
monitoring and directing large projects, an electric power exchange system for the
electric power industry, and an information system for a utility company.  In most
cases these development efforts made heavy use of legacy software assets.

As an example of the specific leverage provided by technologies such as
CORBA and Java, Allied Signal Engines, a business unit of Allied Aerospace, has
reported a cost savings of $750,000 per new application [4].  This was
accomplished by moving to a component-based software architecture and by
outsourcing a major portion of the actual coding effort to an offshore development
company in India.  They found that they could “raise the starting point for every
application, reducing the cycle time and thereby reducing costs.”  Their wide-
ranging development efforts were made possible, at least in part, by the network-
centric computing models that were described in the previous section.

The common themes running through all these examples are rapid development
(months rather than years), the use of DOC and the Web, component-based
architecture, and the use of the previously existing legacy infrastructure.  Domain
analysis is not the issue it is for new development because the domain is well-
established, but significant effort goes into defining new business objects and
redefining the business goals.  Clearly, these “makeovers” are the basis of product
families in the sense that they result in a set of core assets (distributed objects)
that form the basis of future product development.

7. Conclusions

The approaches to software evolution are changing rapidly along with the
changing technology.  The changing technology is pushing the evolution of
systems in several ways.  Two approaches to software evolution appear to be on
the decline.  First, it is rarely possible, because of huge investments in legacy
systems that have evolved over many years, to replace those systems and start
from scratch.  So the “big bang” approach to software migration is not often
feasible.  Second, it is increasingly less attractive to continue maintaining
traditional (functional) legacy systems at the lowest level of abstraction expecting
them to evolve into maintainable assets.  So the fine-grained maintenance
approach is also undesirable because it neither adds value to the asset nor
provides for future leverage.

The recommended approach for systems evolution can be summarized briefly
as follows:
• Understand the goals and resources of the enterprise with respect to a system

evolution project.  Use a software evolution framework to plan a disciplined
system evolution.

• Understand the legacy system at a high level of abstraction using system
understanding technology paying particular attention to interfaces and
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abstractions.  Find the encapsulatable components of the legacy system upon
which to build.

• Consider middleware and wrapping technologies for encapsulating
subsystems and creating distributed objects that form the basis for product
line systems.  Apply those technologies in accordance with the framework.

• Consider using the World Wide Web for expanding the scope of the legacy
system and as a development tool.  Capitalize on the universality, ubiquity,
and access that the Web provides.

As is so often the case in software engineering, this approach to software
evolution raises the level of abstraction so that our resources are being used more
effectively.  Economic realities are pushing us from low-level maintenance
activities to high-level transformations.  A focus on architecture and product lines
is facilitating large-scale reuse in construction where before we were satisfied
with small-scale reuse.

The use of these new approaches is still somewhat risky and advanced, but by
no means unprecedented.  They have been employed in prototypes, tested in small
systems, and used to transform large systems.  Useful and production-quality tools
are now available.  New developments are occurring at “Internet speed”.  Product
line advocates must diligently follow the developments in integration and web
technologies as well as legacy system migration techniques.  Failure to do so will
make their work much less relevant to the practitioners who have no other choice
but to start from their legacy systems.
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Abstract. The product line for software systems (PL) approach has been touted recently as
one of the most promising development approach for gains in product quality, time to market
and cost reduction. The approach is complex and must be tailorable to situations in which its
characteristics may be of interest for adoption within a development environment.

We first present in this short position paper a succinct overview of the main entry points
(context) for PL adoption experienced so far within our technology transfer context. We then put
a particular emphasis on the reengineering entry point in which we describe what we think are
the main possible adoption scenarios.

Throughout the paper we emphasize the contribution of (reference) software architectures so
as to highlight the key enabling role it plays for the PL approach.

Keywords: Software product line, domain engineering, software reengineering.

1. Introduction

1. 1. The Problem

In the software domain, a large number of organizations develop at least one line of
products. That is, a set of products that share a core set of similarities. A key problem
is to manage, as efficiently as possible, the development and maintenance of the soft-
ware variations that go into these similar, yet somewhat different products. Among the
problems experienced in practice are the lack of economic instruments to plan for, or to
manage the diversity among, the product variants; the unstructured reuse of analysis,
design or code artifacts within the line; the difficulties to manage the configuration of
multiple products.

These problems have well documented consequences: Multiple code-bases prolifer,
little conceptual integrity can be insured and sharp software structure degradations oc-
cur. In brief, the design of new variants as well as the maintenance of previous ones be-
comes increasingly difficult. A situation familiar to many organizations.

1. 2. The Product Line Approach and Its Context

Product line for software systems (PL) builds upon the idea of product line widely
found the hardware industry, i.e., it takes a domain-specific view of the world where
economies of scale and scope can be realized. But because PL has to deal with a much
greater diversity, it must use an oversight structure to codify and articulate that diversi-
ty. This is the role of a domain-specific (or reference) architecture.

Frank v. d. Linden (Ed.): ARES ’98, LNCS 1429, pp. 132-139, 1998. 
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The principal role of such architecture is to present and articulate both the common-
alities as well as the differences within a line of products and engineer them within a
fully reusable, highly parametrized design. Benefits to the architecture approach to im-
plement a PL include: a solid, high level view of the line with which to reason about the
product variants, a solid medium upon which economic analyses can be performed and
traceability actuated, a mechanism to reuse past development as well as anticipate fu-
ture ones, and, a structure where quality attributes can be examined and enhanced.

Yet, for the promises of PL to be widely realized, the approach must be adopted and
hence be transferable within a variety of organizational context. In general, we has ex-
perienced so far within our technology transfer activities three prototypical contexts apt
for PL adoption. One occurs when a set of already existing sysbuilt and the organization
realizes that the PL approach could be adopted to maximize efficiency; we term this
context theproject integrating PL. The last context is the ‘epistemic’,pure PL case
when an organization may decide to start a PL effort from the beginning for a line of
product it wants to development and produce.

Even though we chose, because of the constraints of this forum, to focus more deeply
only on the reengineering-enabled PL context (the most widespread, we believe), we
will see that the concept of (reference) architecture plays a key role in all three contexts.

1. 3. Related Work

Few directly relevant publications explicitly address the general contexts for PL ad-
option are known to us. Yet, there is an increasingly larger body of PL work where this
information transpire indirectly: [1], [2], [3], [10], [11]. All contain references to one or
many contexts of application, these fit within the three principal contexts elicited above.
None focus specifically on the reengineering-enabled PL context.

The remainder of this position paper is organized as follows. Section two outlines the
main entry points for adopting a PL approach. Section three focuses on the reenginee-
ring entry point. Section four present our conclusions.

2.  Main Entry Points to Product Lines for Software Systems

In this section, we refine the three principal entry points for adopting a PL approach
within a development environment. Figure 1 above presents a somewhat simplistic,
high level view of the main PL entry points and will be used to illustrate our description.

2. 1. Pure PL

This context refers to an organization that decides to start a PL effort without any or
much existing software assets after having positively assessed the line economic viabi-
lity. This case is very similar to a pure domain engineering (DE) effort where a domain
analysis is first performed which then leads to the definition of a PL asset base. Pure PL
produces a asset base made of the reusable infrastructure (RI) -- a domain model (con-
cepts and relationships), associated reference architecture and components -- together
with an application engineering process tailored to the development environment. After
each product instance construction, possible unsatisfied requirements, errors or adapta-
tions must be resolved and integrated within a new version of the asset base.
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The domain model documents the reference architecture which itself articulate the
executable components. A main elements of the reference architecture is a decision mo-
del which prescribes the dependencies among the reusable infrastructure artifacts and
drives the instantiation process. The reference architecture should then be seen as high-
ly coupled with the application engineering process.

In our description, we do use the word domain as possibly being of arbitrary size and
denoting a collection of sub-domains (as in any interesting real world domain would).

2. 2. Project Integrating PL

The situation in this context is different from the pure PL case in the sense that some
assets have already been produced within one or more running projects and a decision
to adopt PL ideas is made. To introduce the PL, running projects must keep going while
the PL asset base is developed. Yet, the integration between the asset base and the pro-
jects must be gradually completed and this is a difficult phase as the projects may have
time-critical constraints among others.

The construction of the reusable infrastructure and in particular the reference archi-
tecture can play a critical role for this integration to happen.

The PL effort can start with the one or many of the architectures already developed
by the projects and perform merge, extend and refine analyses to study how an integra-
tion could be done. This reference architecture can be used as a candidate or even the
basis of the PL asset base.

This asset base can then serve as input to a pure PL development process such as the
one described in the previous subsection so as to anticipate the future product variants.

This context process was of course prototypical in the sense that the degree of inte-
gration necessary as well as its precise occurrence in time can vary widely.
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2. 3. Reengineering-enabled PL

Most organizations already possess application developed in their domains of exper-
tise. Hence, we think this context is one of the most likely to be found in practice. Often,
organizations come to the ideas of PL only after experiencing the pain of multiple, time-
degraded code bases.

The challenge in this context is to start developing a PL asset base from the existing
applications. It is in effect an attempt to re-understand the specifics of existing applica-
tion and put this understanding in a form usable for a PL effort. Again, the notion of
architecture is key.

It is our belief that any medium or large scale reengineering cannot succeed without
a (domain-augmented) architecture recovery and redocumentation approach. Such ar-
chitectures, coming from multiple existing systems, can then serves as one strong basis
for development of a PL in a fashion largely similar to the one in the previous subsec-
tion. The importance and leverage given by an architecture-centric reengineering ap-
proach for the reengineering-enabled PL context is detailed at length in the next section.

3.  Reengineering as a Product Line Enabler

In this section, we introduce a process which applies reengineering on related sy-
stems with the goal of producing key initial PL assets. We termed this the reengineering
enabled PL context. We first describe the recoverable asset types and their contributions
towards a pure PL process. We then present the reengineering process to recover these
assets. Last, we proceed by highlighting approaches which combine this assets recovery
process with domain engineering so as to deliver a reusable infrastructure for a PL.

3. 1. Initial Product Line Assets

The proposed reengineering process produces the following assets:

• initial reference architecture

• recovered reusable components

• domain concepts and inter-relationships

The primary contribution of reengineering as enabler for PL is to recover architectu-
ral views of existing systems from the domain of interest and to associate with the logi-
cal components of this architecture the actual code implementing these components.
These recovered architectural views are combined into an initial reference architecture.
This architecture provides a good initial structure on which domain engineering can ap-
ply change and evolution scenarios to evaluate how well this architecture serves the
needs of the PL.

The value of a reference architecture is more important if some of its key compon-
ents are implemented and can be reused within a PL. By associating existing code
which has been tested and validated by field usage with components of the initial refe-
rence architecture, the proposed process makes a first step in this direction. This code
probably needs to be parametrized and generalized, but it shares with the initial refe-
rence architecture one important quality: they both come from existing systems from
the domain which fulfil the needs of at least one instance of the intended PL.
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A secondary contribution of the reengineering process is to elicit of some key doma-
in concepts and their inter-relationships. In a domain model built independently of exi-
sting systems, these concepts and relationships can point to gap in domain
understanding.

Next we introduce the reengineering process which produces these initial assets.

3. 2. Process for PL Assets Recovery

Figure 2 illustrates the process for the recovery of the initial PL assets. It starts with
architecture recovery, then proceeds with architecture evaluation and combination.
While this evaluation and combination occurs, concepts elicitation implicitly take pla-
ce. The process ends with component recovery.

Architecture Recovery
The architecture recovery can produce multiple views of each system using various

component identification techniques which take into account different aspects of the sy-
stem, like the call patterns [5], similarity in context [6],[13] and dynamic analysis [8].
Then communication patterns among these components can be identified, commonly
with the support of data flow analysis [12] and cliche recognition [4]. The resulting
views can be validated through feedback sessions with maintainers, designers and ar-
chitects of the system.

Architecture Evaluation and Combination
The most relevant of these views are selected to perform architecture evaluation and

combination. Here, we use scenarios which capture tasks performed by users in existing
and forecasted applications (products), as well as maintenance and development roles
to evaluate the relative ability of alternative architectures to support the needs of the PL.
This evaluation is based on the structured scenarios used in the software architecture
analysis method SAAM [9]. In the case where the decision to develop a PL stems from
problems in adapting existing systems to new requirements, it is reasonable to expect
that the main change and maintenance scenarios will be relatively easy to obtain.

When the original systems cover different aspects of the domain, these systems
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usually have complementary parts which do not excessively overlap and hence their
parts may be more easily combined architecturally. The identification of these non-
overlapping and complementary parts can be supported by techniques used to restruc-
ture systems while minimizing coupling. The final result of these evaluations and com-
binations is an initial reference architecture which can be improved upon during the
later domain engineering phase.

Domain Concepts and Relationships
As the various views which compose the recovered architecture descriptions are va-

lidates and evaluated, some components will be associated with domain concepts by the
system experts or the reengineers and the relations among these components (e.g. de-
pendencies, communication, containments) will suggest relationships between domain
concepts. These domain concepts and relationships are fundamental to the construction
of the domain model.

Components Recovery
Once an initial reference architecture has emerged and the most valuable compon-

ents are identified through architecture evaluation, we can focus our efforts in recover-
ing and encapsulating these components. Using techniques used to identify small
encapsulations [7], dependence analysis, dominance analysis and variable localization,
it is possible to create initial reusable components which can be generalized, para-
metrized and improved upon during domain engineering.

3. 3. Assets Recovery & Product Line Engineering

This subsection highlights three scenarios for reengineering enabled PL - the sequen-
tial, parallel and hybrid scenario - to combine the assets recovery process presented abo-
ve with domain engineering.

Sequential Scenario
The sequential scenario, depic-
ted in Figure 3, performs archi-
tecture recovery on each of the
systems, recovers the initial as-
sets, and only when these initial
assets are all available, the do-
main engineering does start. The
main advantage of this scenario
is that it provides the domain en-
gineering with a clear view of
what are available reusable as-
sets.

Furthermore, it offers a clear decision point: After the asset recovery phase, one is in
a better position to evaluate if there is already enough reusable assets and knowledge to
support the creation of a PL. If the decision is to delay the introduction of the PL de-
velopment, the recovered architectures are still valuable documentation of the existing
systems. Similarly, the exercise of applying change scenarios to these architectures in-

Figure 3: Sequential Scenario
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Parallel Scenario
The parallel scenario, de-

picted in Figure 4, indicates
that the domain engineering
can proceed in parallel to the
architecture recovery. The
only information recovered
from existing system which
is concurrently provided to
domain engineering is the
domain concepts and their
inter-relations. Otherwise
the two activities proceed
independently. Domain en-
gineering produces an idea-
lized reference architecture
and reengineering produces
an initial reference architec-
ture. These two reference ar-
chitectures are then combined through a compromise between the idealized architecture
developed with less historical constraints and an architecture which offers potentially
more reusable components (of course, this scenario is a little schematic).

One advantage of this scenario is that the compromises in combining the reference
architecture are made explicit. One knows the forecasted advantages of an architecture
unconstrained by existing systems and one has a good estimate of the proportion of exi-
sting components which could be reusable. A second advantage is that domain enginee-
ring can start earlier than in the preceding scenario.

The main inconvenient is that it is likely that the combination of existing components
within a reference architecture which was developed unconstrained by the history of
existing systems may be difficult.

Hybrid Scenario
This scenario tries to strike a balance between the two previous ones. It first select

one of the existing systems as most representative of the possible products in the line
and the one with the most promising architecture and applies the PL assets recovery
process on it. The initial PL assets are then used as a starting point by a domain engi-
neering phase which proceed in parallel with the assets recovery on the remaining sy-
stems.

One advantage of this scenario is that the recovery of assets on one system takes
considerably less time than when it is applied on many systems. Therefore, domain en-
gineering can start earlier.

Generally, each of the three scenarios produces some (or many) elements of the reus-
able infrastructure used in the PL developments. That is a domain model, a reference
architecture and some reusable components. However, it is clear to us that there is a tra-

Figure 4: Parallel Scenario
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de-off between the freedom of defining a new reference architecture and the possibility
to reuse components from existing systems. This trade-off is a strong, practical factor
in the choice that an organization would make among the three scenarios.

4. Conclusions

We have presented in this position paper a description of three principal entry points
to PL. We have paid particular attention to the one dealing with reengineering as we be-
lieve this case to be the most likely in real organization settings. A next step upon which
we are endeavouring is the production of three guidebooks to document the processes
we have outlined here in much better details.

Acknowledgement:
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Introduction

Architectural analysis is a most important issue for an effective use of software
architectures in the development of families of software products. Very often,
architectural design deals with making decisions which can have an utmost impact
on the system characteristics and quality. As the final system properties can only
be observed when the system is at least partly implemented, finding ways of
assessing the impact of architectural decisions early in the development cycle is
vital to the industrial scale applicability of the architectural approach to software
development.

The forth session of the ARES Workshop was devoted to this important
subject. The session began with a general discussion about the goals of
architectural analysis. This was followed by a short presentation of the papers that
were submitted to the session. The discussion was resumed on the important
issues of available technology for architectural analysis.  The session ended with a
summing up, where some conclusions were agreed upon by the participants.

The main points of discussion are summarized in the rest of this introduction.

Goals of architectural analysis

The goal of architectural analysis is to get measures of compliance with regard to
some system properties. It is of crucial importance to identify which are the
relevant properties for a given domain, and how analysis techniques can be
applied to product families.

Some of the properties than can be analysed are quite general, e.g.:
• Performance, or satisfaction of real-time requirements.
• Safety, liveness, reliability, etc.
 When dealing with product families, however, there are specific points that

deserve special attention, e.g.:
• Time and cost of production for specific members of a family.
• Kinds of variation which can be covered by the architecture.
• Properties that are preserved for all variants of an architecture.
• Stability of interfaces with respect to evolution in products.

mailto:clements@sei.cmu.edu
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The issue of analysing the rationale of the architecture or the trade-offs it
implies was recognized as an interesting, but considerably more difficult, one.

Another important issue is the role of analysis in an architecture oriented
process, especially when reengineering an already existing product. In this case,
architectural analysis can not only deal with architectural design issues, but with
the results of other development phases as well, provided they can be referred to
the product architecture.

Stakeholders

The identification of the main roles that take part in the process, and their
different views, is an important issue that has a clear impact on the way the
relevant system properties are defined. The discussion at the workshop revolved
around those roles that are peculiar to a product line environment, and produced
the following list:
• product line architect;
• builder of generic (core) assets;
• builder of product from generic assets;
• product line maintainer;
• marketer / funder of the product line

Listening to the stakeholders has been reported as one of the crucial issues in
architectural assessment, which can be confirmed by the experience of the
companies that are working in this area.

Techniques

A number of techniques for architectural analysis were described in the papers
that were presented in the session. There was a general consensus that the field is
not yet mature enough, and new techniques have to be developed which are
specific to the architectural abstraction level, rather than just adapting design level
methods. It was also recognized that architectural analysis techniques are
application domain dependant, which makes it difficult to give general guidelines
about which methods to use for a given product line.

The global perception is that companies using an architectural approach to
product families development are currently using assessment methods based on
meetings and reviews, rather than more formal techniques or automated tools.

Conclusion

The main conclusion of the session is that architectural analysis is a fundamental
issue in putting architectures to work in industry. The field, however, is immature
and more effort is required in order to identify the best approaches and
techniques.



www.manaraa.com

142      Paul C. Clements and Juan Antonio de la Puente

The relation between costs and benefits, and the stakeholders' views have been
identified as important issues for discovering which are the relevant properties of
an architecture, but a number of general properties, which seem to be of interest
for different projects, have also been identified and listed.
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Abstract. A critical distinguishing characteristic of architectures for
families of embedded systems is their relative need for error-
detection and -management.  This need can range from extreme, as
occurs with nearly all life-rated systems, to nominal, such as might
occur with simple, inexpensive toys.  Increasing a system's
capability for error detection and management invariably results in
increased complexity and an increased load on system resources.
Consequently, even systems with extremely high error management
capability sometimes demonstrate anomalous behavior.  When this
occurs, it is typically necessary to rapidly and effectively identify
the source of the anomaly.  Therefore, a key consideration when
developing an architecture for a family of embedded systems is
determining the scope and nature of the diagnostic requirements
that will be placed on the architecture.

This paper discusses the value of diagnostic architectures, the
construction of diagnostic architectures, and techniques for
determining where diagnostic elements should be placed within an
architecture. The paper also examines several specific diagnostic
techniques and discusses tradeoffs between detail, data persistence,
system performance, and system resources.

Keywords. Diagnostic Software Architectures, Error Management,
Software Architectures, Embedded Systems, Software Families.

1. Introduction

There are essentially two types of embedded systems: those that are perfect, and
those that are not.  If it is possible that your system is less than perfect, then you
need some means to diagnose the source of problems after they occur.

A common challenge in all embedded software systems is determining the ideal
amount of internal error checking and management.  The objective is to have a
sufficient, but not excessive, amount of error management.  Excessive error
management typically causes unnecessary complexity, increased software size,
and decreased software performance.
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Software systems are usually designed with error detection and management as
an integral part of overall system functionality.  To support insight into alternative
error management approaches, analysts and designers might employ model-
integrated environments [1], patterns [2, 3, 4, 5], and formal techniques [6].  Even
with such techniques, very few systems can be asserted defect-free.

Therefore, as the architecture forms, most analysts and designers strive to
ensure sufficient error management routines to accomplish two objectives.  The
first objective is to prevent errors from happening.  The second objective is, if
prevention fails, to manage the impact of errors as an expected part of overall
system processing.

Outside of mission-critical, life-rated systems (flight-control being an excellent
example) designers often fail to consider an equally important third objective.
This objective is to design the software architecture to aggressively support after-
the-fact identification and diagnosis of system errors and anomalous behavior.
This diagnostic approach to software architectures provides the same type of
recovery and corrective options to software development and maintenance
personnel that diagnostic systems provide in mission-critical software systems and
systems resulting from other engineering disciplines.

To summarize, in principle all systems should be designed to achieve perfect
error detection and management.  However, since there is a chance the actual
system might be less than perfect, systems should also be based on architectures
that help diagnose problems that were not successfully detected nor managed.  In
the event of anomalous system behavior a diagnostic architecture helps you
rapidly focus the search for defects to the fewest modules, fewest objects, fewest
lines of code, and fewest data elements possible.

Section 2 of this paper discusses the construction of diagnostic software
architectures and presents techniques to use for determining where diagnostic
elements should be placed within an architecture.  Section 3 examines several
specific diagnostic techniques and discusses tradeoffs between detail, data
persistence, system performance, and system resources. Section 4 presents a
summary and conclusions.

2. Constructing Diagnostic Software Architectures

When you, as a software project manager or engineer, are first informed of a
problem in the performance of a software-intensive system you usually are given
three types of information: (1) context--the system's general environment while
executing, (2) sequence--the series of actions immediately prior to problem
detection, and (3) consequence--the known and probable results of the problem.
Therefore, a diagnostic architecture must augment the above information to
provide the most comprehensive insight possible into the probable source of the
problem.

Generally, insight regarding how best to augment problem information is
achievable after preliminary system design, or after development of the system
invention and design rules [7].  At this point the software architecture is beginning
to take shape, and is primarily driven by key elements within both the problem
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domain and the solution domain.  This is an ideal time to adjust the architecture so
that it also supports diagnosis of system anomalies.

To identify where in the architecture you should consider making changes to
accommodate diagnostic support, you ask the following four questions:
• Where can the most comprehensive insights be gained? (Breadth of insight.)
• Where can the most important insights be gained? (Depth of insight.)
• Which modules will dominate the behavior of the system?  (Type of insight.)
• Which interfaces will reveal behavior? (Frequency of insight.)

 A key principle in properly developing a diagnostic software architecture is
that the diagnostics are intrinsic to the architecture, not to the code.  That is, at
certain locations within the overall system a call is made or message passed that
results in the storage of diagnostic data (details on how this occurs are deferred
until Section 3).  Keeping the diagnostic algorithms out of the application code
helps preserve maximum flexibility for modifying and updating the code without
negatively impacting your ability to perform software diagnostics.

 There are a variety of locations within the architecture that are good candidates
for answering the four questions asked above.  Consider, for example, using
diagnostic routines:
• Immediately upon receiving data from external systems
• Immediately before passing data to external systems
• Upon exchange of data with persistent data stores
• Between major system states
• Before/after complex data manipulations
• Before/after high-visibility behavior
• Before/after critical no-visibility behavior

 Note that some of the areas described above are usually well-protected by error
detection and management routines.  For example, checking data from external
systems, and rejecting bad data, is a fairly common practice.  However, if some of
these areas are not well-protected then diagnostics could be critical when trying to
isolate the source of system problems.  As another example, any type of persistent
data store is a candidate for diagnostics since sometimes these data stores are not
nearly as persistent as originally designed.

 In addition to determining how to adjust the architecture to support diagnostics,
it is necessary to determine the most appropriate types of diagnostic techniques.
This is discussed next.

 3. Diagnostic Techniques

 Diagnostic techniques can be classified using two characteristics: (1) what is
being diagnosed, and (2) what are the limitations on the diagnosis?

 With regard to the first, the two primary options are to diagnose the process or
to diagnose the product.  Process diagnosis generally consists of tracking the
activation or invocation history of various objects, modules, subroutines, etc.
Product diagnosis typically consists of tracking the creation, manipulation,
storage, and destruction of data.
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 With regard to the second characteristic, limitations are usually a reflection of
acceptable negative impact on available resources.  Common limitation categories
include:
• Frequency limitations (e.g., log no more than the last 100 change instances)
• Time limitations (e.g., log nothing older than the last 10 seconds)
• Activation limitations (e.g., only log data from the last 3 times the system was

activated)
• Negative feedback loop limitations [8]. (e.g., limit when data recording

threatens to result in excessive computational demand)
• No limitations (e.g., always record everything). Note: this is generally

unrealistic.
After identifying areas in the software architecture that are candidates for

diagnostic insight, it is then necessary to answer the two fundamental questions
presented above: (1) what do I need to diagnose (process, product), and (2) what
limitations exist regarding my ability to implement diagnostic intelligence (time,
space, frequency, other)?  By carefully considering the insights to be derived from
using different diagnostic techniques at various places within the system, you can
strive to have the most revealing and informative set of data while simultaneously
minimizing negative performance impacts and the use of critical system resources.
Properly designed diagnostic architectures may also yield highly reusable
architectural components [9].

4. Summary and Conclusions

Due to market competition, innovation, technology advances, and other factors,
embedded systems are often subject to considerable updating and evolutionary
change.  Ideally, the architecture for these systems are designed to anticipate,
accommodate, and even facilitate rapid change.  However, with the insertion of
new or upgraded features there is always the possibility of inserting defects that
result in system performance anomalies or outright failures.

Error capture and management routines are an essential part of even simple
software systems.  However, with increasing complexity it becomes progressively
more difficult to determine if you have successfully implemented an appropriate
amount of error management.

Although the ideal is for systems to always work perfectly, if your system ever
starts exhibiting anomalous behavior, you must have the means to successfully
conduct an investigation into the source of the anomalies.  As presented in this
paper, one means to improve your ability to conduct such investigations
efficiently and successfully is to design the software architecture with the express
purpose of supporting diagnosis of behavioral anomalies within the family of
systems derived from the architecture.
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Abstract:  The fulfilment of quality requirements is fundamental for
the success of software-intensive systems. This fact forces
companies to quantify the quality requirements at the moment of
their specification, and to evaluate these requirements in all the
results of the design process, both the by-products and the end
system. The definition of the software architecture is one of the
most important and early decisions of the design process, with a
strong influence on the final quality of the product; therefore its
evaluation should be made as early as possible, before the design is
complete. This paper presents a software architecture evaluation
model considering the software architecture as a final product itself
and also as an intermediate product of the design process.

1. Introduction

The quality of equipment, services and systems is an essential element for the
competition in the global market. Customers ask for increasingly more complex
and demanding systems that must meet high quality standards.  This fact drives
software development companies to monitor the quality of both their products and
their processes. Quality consists in the fulfilment of the system requirements,
although as important as the “functional” aspect, is the fulfilment of other
characteristics of its operation, more difficult to evaluate, such as the resource
efficiency, the scalability, the maintainability, et cetera, that usually receive the
name of “quality requirements”.
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The scientific and industrial communities recognise that, in the case of
software intensive systems, the first phases of the design and the decisions made
then have a fundamental impact on the final quality. Not only because the errors
made in the design cycle have more expensive reparation as they propagate, but
because the early decisions will impose a strict threshold for the capacities and
quality of the final system, especially in relation to these no-functional
requirements. Being one of the first decisions made, the Software Architecture
(SA) must be checked against these quality requirements. This approach is just to
be applied in companies that design software systems with strict quality
requirements.

A brief definition given by Garlan and Perry [9] establishes that SA is “the
structure of components in a program or system, their interrelationships, and the
principles and guides that control the design and evolution in time”. This reveals
the most important issues of SA:
• The focus on structural information, instead of algorithmic or behavioural

models, because the approach is based on the definition and usage of high
abstraction level components and their relationships (connectors in
architectural terms).

• The information about “what to do” and “when” (i.e. the development
process), is still part of the SA.  This includes the know-how of the company
about the product line.

• All the information included in the SA is oriented towards controlling the
product evolution in time.

The draft-standard ISO/IEC 14598-1 specifies the elements required for quality
evaluation of software: the quality model, the method for evaluation, the metrics
and the supporting tools. Thus, in order to develop good software, quality
requirements must be specified, the software quality assurance process should be
planned, implemented and controlled, and all intermediate as well as end products
must be evaluated.  A suitable method to perform objective software quality
evaluations is the measurement of the quality attributes of the software. This
approach will be applied to the architecture of software systems: this article
presents a quality model, methods for evaluation and metrics adapted to the
assessment of SA: in the second section the general software quality assessment
process is defined and in the third one the SA evaluation model. The article
finishes with some comments about the current and future work in this area.

2. The General Software Quality Assessment Process

The result of any software development phase (including the last one) can be
considered as a software product, with its own requirements that express the needs
of its users, and that must be defined prior to the development.  Besides, in the
same way that global requirements evolve with respect to the development phase,
they are also partitioned following the software product decomposition into its
major components (which may require different evaluation criteria). An example
of this at the SA level is the need for different quality requirements for the critical
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components in a hard real-time system, whose safety and predictability
requirements are more strict than the requirements for the logging subsystems.
Therefore, in order to keep consistent the quality specification for each subsystem
with the one of the final product and throughout all the phases of the development
process, quality requirements need to be specified in terms of a common quality
model.

One available quality model is defined in the standard ISO/IEC Draft 9126-1
– Information technology – Software quality characteristics and metrics Part 1:
Quality characteristics and sub-characteristics [7].  This part of ISO/IEC 9126
specifies a quality model that categorises software quality into six characteristics,
which are further divided into sub-characteristics. These are defined by means of
externally observable attributes for each software system. In order to ensure its
general application, this standard does not cover which are these attributes, nor
how can they be related to the sub-characteristics.

User
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quality
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Figure 1: General quality process.

Once the quality model has been chosen, the general quality process starts (see
Figure 1). The user requirements for the product (the result of any development
phase) are studied by the development team, who specifies the product external
quality requirements for each relevant quality characteristic, in order to establish
the extent to which a product satisfies the user needs when used under specified
conditions. A specific set of externally observable attributes (such as response
time is used to define the efficiency of a computer system) are useful for this
purpose. The completeness and correctness of the quality requirements
specification need to be evaluated then to ensure that all the necessary



www.manaraa.com

A Software Architecture Evaluation Model      151

requirements have been specified and unnecessary requirements excluded. The
developers will evaluate the product against these requirements before delivery.

The external quality can be assessed by means of the external metrics applied
under usage conditions. The external evaluation of the quality characteristics
should therefore take place under conditions that emulate as closely as possible
the expected conditions of use.   It is important at this point to note that "metrics"
in this context denote any kind of quantitative result that follows certain
conditions about allowed values, scale and the measurement procedure.  For
example, the results of simulation, provided those items, can be categorised as
metrics.

At next, the developers must specify the internal quality requirements of the
product. The internal quality is the whole set of internal attributes of a product
that determine its ability to satisfy its needs.  The difference between external and
internal attributes is that those reflect the influence of the environment of usage of
the product, while internal ones focus only on intrinsic properties of the product
(such as modularity and complexity), more related to its structure and to the way
it is being built. In any case, the specification of the internal quality should use the
same quality model used for the external quality specification, so the external and
internal attributes are kept coherent.

The internal quality of each product can be evaluated by internal metrics,
which measure these internal attributes. One of the most important usages of the
internal quality evaluation is to help in choosing and improving the development
process for a product line. Another main usages are the evaluation of internal
attributes for technical decision making on several building options during
development, and their usage like external quality indicators.

3. The Software Architecture Evaluation Model

Following these general considerations for the development and evaluation
process, the specific process for the SA evaluation, shown in Figure 2, is based on
the consideration that SA is a software product, and it should follow and adapt the
general software quality process. In the next description, the taxonomy used for
metric, measure, measurement, quality and attributes is that defined in [7].

3.1 Quality Specification

Following the definition given by the standard ISO 8402, the quality specification
must contain the totality of characteristics of an entity that bear on its ability to
satisfy stated and implied needs. The user view is expressed in the external quality
specification and the developer view is expressed in the internal quality
specification.

The external quality specification

The users and the developers specify the external quality of the final product or
system and the external quality of the SA using the quality reference model
presented in ISO/IEC 9126-1. The specifications must contain the selected quality
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characteristics and their optimum and allowed values under the user viewpoint.
These requirements will be evaluated before the product delivery through testing
techniques.
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 Figure 2: Quality evaluation model for SA.

The internal quality specification

The developers specify the internal quality of the SA based on the external quality
of the product and the external quality of the SA, using the same quality reference
model (ISO/IEC 9126-1) and by means of the definition of a set of software
internal attributes. The specification must contain the software internal attributes
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selected for each quality characteristics and also their optimum and allowed
ranges of values.

The developers need to decide how to particularise the specified quality
requirements on the SA. For this purpose, they need to map these quality
requirements to internal attributes that will be present on the SA. The mapping is
based on the expert’s knowledge or company accumulated data, depending on the
maturity of the process implanted on the company.

The internal attributes are composed by special elements (such as functional
elements or data elements) denoting quality characteristics, and intrinsic
properties resulting from the development process (such as size, modularity,
complexity, coupling and cohesion). For example, considering for analysability
the following correspondence with internal attributes, the developers need to
establish the relative importance between these attributes and their values. Some
techniques such as the Quality Function Deployment (QFD) [8] are suitable for
this purpose.

Special components  for state mapping during program execution

Special components  for diagnostic capability

Special components for  event indication during program execution

Usage of standard formats for representation of data

Size

Coupling

Complexity

Modularity

Cohesion

Analysability

3.2 Metrics Specification

The metrics specification must contain: the selected measure for each specified
quality characteristic and internal attribute, a measurement scale, and the set of
available methods for measurement, including procedures to categorise qualitative
data. The metrics will be external when evaluate the external quality or internal
when evaluates the internal quality.

A particular measurement is useful when the measure helps in understanding a
process, its resources, or any of its products [3].  Then, the assessment team must
choose some of the available metrics (some will be presented in this section); or
define new metrics following a certain reasoning process, such as the Goal-
Question-Metric (GQM)[2], composed by several activities:

• The first step is to define the goal in terms of purpose, perspective and
environment.  In the present case, the purpose is related with the SA
quality evaluation, indication and comparison, and the end product quality
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prediction. The perspective depends on the aims of the assessment and it is
closely related to the role of the evaluation staff: developer, user,
management, maintainer, et cetera.  There are two suitable environments:
the SA representation considered like an intermediate design product or
like an end product itself.

• The second step is to establish the questions that indicate the attributes
related with the goal.

• In the third step each question is answered, and a proposal for new or
existing metrics is carried out.

The external metrics specification

The purpose of the external metrics is to provide data for the evaluation of SA as
a product in itself, not related to the final product, but focusing on its usage during
the development; its users are often the staff of the next development phase.
External metrics depend on the real use of the SA (for example, for evolution
analysis of a product line), so it has to be evaluated as part of a working
environment for the intended usage. One case of external measure applicable to
the SA for measuring its analysability is:

Mean time for analysis =
Sum of times between analysis request and its execution /
Number of analysis to be carried out

A common case of analysis is to trace the fulfilment of a certain function point
in the SA.

The internal metrics specification

The purpose of the internal metrics is to provide data for the software product
evaluation regardless its environment. Internal metrics provide users, evaluators,
testers, or developers the chance to evaluate the product quality before its usage.
Then, internal metrics can be used:

• to evaluate the SA internal quality.
• to indicate that the software satisfies external quality requirements.

The measurement of internal metrics often use figures of amount or frequency
of appearance of special software elements in the product representation (such as
graph representation or tables of control, data flow, state transition structure or
documentation) and therefore the figures can be obtained without execution.
However, few available metrics for SA have been found in the literature.  Thus,
some common metrics defined for design representation and source code must be
adapted to the elements that appear in SA representations, that are expressed
using an Architectural Description Language (ADL) [3] [4] [5] [6]. One common
measurement procedure is the architectural walkthrough using the ADL model
and the description of its components.



www.manaraa.com

A Software Architecture Evaluation Model      155

Some examples of measures that detect the presence or absence of special
elements in the SA are:

• Security measure:
Data encryption ratio =

Number of data components defined with data encryption-
decryption facility in the SA /
Specified number of data components requiring data encryption-
decryption facility in the internal quality specification.

• Analysability measure:
Diagnostic functions ratio =

Number of diagnostic functional components in the SA /
Specified number of diagnostic functions in the internal quality
specification.

• Changeability measure:
Parameterisation ratio =

Number of parameterisation data components in the SA /
Specified number of parameterised data components in the
internal quality specification.

The intrinsic properties (such as size, modularity, complexity, coupling and
cohesion) are determined by combination of measures directly applied on the SA
representation.  These measures can be further divided into those referring to the
number of interface and implementation elements, and those about the SA
configuration, defined as counts of graphs and interaction elements in the model.

3.3 Quality Evaluation

The quality evaluation consists of the data collection, the measurement and the
analysis of results.

The external quality evaluation

For external quality evaluation, the goal of metrics is to find the values specified
in the external quality specification for each software characteristic. Then, an
external quality specification must exist which defines the expected software
characteristics with their values. The measures are applied and the results are
compared with the expected values.

On the other hand, if there are no available specifications for external quality,
the results of application of internal metrics on the SA can be used as an
indication or foresight of the presence of a certain quality characteristic in the end
product. The metrics are applied and the results identify the presence or value of
an internal characteristics set (such as the presence of special function or size) that
can be associated with some external quality characteristic (such as modularity
and diagnostic function can be associated with maintainability).
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The internal quality evaluation

For the internal quality evaluation, the goal of metrics is to find whether certain
internal attributes meet the values specified in the internal quality specification for
each software characteristic. Then, a previous internal quality specification must
exist which defines the expected internal attributes with their values and their
evaluation procedures. The measures are applied and the results are compared
with the expected values.

The presence or absence of special elements is, usually, detected by several
questioning techniques [1] (such as scenarios, questionnaires and checklists) and
inspection techniques (such as SA models walkthrough). This information,
usually, is not formalised in an ADL, but it is attached to the ADL model in the
form of annotations, attributes or natural language descriptions.  The intrinsic
properties, however, can only be detected by measuring techniques [1] applied on
the SA representation formalised through an ADL.

The SA development process used constraints the internal attributes of the SA,
so the measurement result can be used as feedback for the improvement of the SA
development process.  Another peripheral use for software internal attribute
measures is to normalise external measures in order to allow the comparison
between SAs. For example, using the internal attribute “size” for normalisation of
analysability measures:

Analysability metric normalised by size:
Density of time analysis = Mean time analysis / Size

4. Conclusion and Future Work

This paper presents a research work whose aim is to establish the basis for the SA
quality evaluation and prediction of the final system quality, since it is accepted
that SA, as a product of the design process, has a great influence onto the final
product quality. For this purpose, a quality model based on well-know standards
has been chosen, and a conceptual framework that relates quality requirements,
metrics and internal attributes of the SA and final system has been proposed.

Additionally, a rigorous formalisation of the evaluation process of the quality
requirements of the SA, especially in relation to metrics has been advanced.
Although it is an especially novel work because of youth of the work area, the
adoption of design models based on components (strongly based on the SA
approach) will show in the future more work in the same line.

Same aspects that still need elaboration are:
• The formalisation of the relationship between internal quality attributes and

quality characteristics/sub-characteristics, which must be studied for specific
application domains, development processes and ADLs. QFD will be used to
organise and identify the weighted relationship between quality
characteristics and internal quality attributes, allowing to make the technical
decisions more appropriate, even in presence of contradictory quality
requirements and attributes.
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• The definition of internal metrics for the internal attributes measurement. As
mentioned, GQM will be used to identify the metrics from goals established
with respect to internal quality attributes through a reasoning process.

An application experiment of these concepts for architectonic evaluation in the
telecommunication system area is being carried out, after a previous phase of
architectural recovery. Some metrics are being applied on the obtained SA.  The
measurement results will also be evaluated by system experts.

This work does not pretend to establish the optimal values for the internal
quality attributes, because they are context-dependent, but to formalise a
framework that provide the means to meet these values and the way for predicting
the quality of the final product from the SA evaluation.
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The whole idea of product families is building shared assets that can be leveraged
to develop members of the product family. This has led product family developers
to focus on three classes of shared assets because they knew how to leverage
assets of those classes. These classes are reference architectures, reusable
components, and component generators. Reference architectures define the span
of a product family by providing a framework for obtaining the members through
instantiation. The leverage gained from this class arises from shared structure,
interaction protocols, services, interfaces, and components. Reusable components
are generalized versions of components that can be specialized for particular
family members through configuration and/or run-time parameters. The leverage
gained from this class arises from avoiding the time and cost of rebuilding those
components for each family member and from using more mature, higher quality,
and better tested components. The structure, protocol, interface, and service
restrictions specified in the reference architecture make it feasible to define the
range that the components of that architecture must span. It can then be
determined whether this space can be spanned through configuration and run-time
parameterization. If so, prebuilt reusable components are the appropriate shared
asset class. If not, generators must be employed to custom build each family
member from specifications. The leverage gained from this third class is the same
as the reusable component class, only the means of obtaining this shared asset is
different.

   Most of the research and practical experience in product families falls into
these three areas. I propose adding a fourth: an infrastructure for monitoring,
instrumenting, testing, and debugging the architectures of individual product
family members. Such an infrastructure would enable developers determine
whether a product family member was performing properly, how well it was
performing, and the locale of any correctness or performance problems.

   It is well known that for non-product family software that 50% or more of the
effort is devoted to testing. One major reason is that there are no shared testing
assets available (because it is not a product family member). The acceptance
criteria, test plan, test cases, test drivers, and test analyzers all have to be
developed anew. Moreover, much of the critical behavior of the system is not
externally visible and can only be accessed and tested by placing probes on the
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interfaces between components. Creating those probes and the instrumentation
they contain is both labor intensive and error prone.

   Product families provide an ideal opportunity for reversing this situation. Just
as reference architectures provided the constraints that made component
generators technically feasible and economically justifiable, these same
constraints make it possible to create shared architecture level monitoring,
instrumenting, testing, and debugging assets that are either applicable across the
product family or easily specialized for individual family members. As with
building component assets, one can either prebuild general assets that are
specialized via parameter instantiation, or generate individualized specialized
assets from specifications, as they are needed.

1. Instrumented Connectors

We have started to create an infrastructure for such architecture level monitoring,
instrumenting, testing, and debugging assets. The centerpiece of this infrastructure
is the capability to insert arbitrary programs into the communication paths
provided by the architecture through which components interact with one another.
This probe capability, called instrumented connectors, is both dynamic and
transparent. It differs from previous probe technologies that operated at a single
fixed level of abstraction, often the lowest. This meant that high level architectural
behavior had to be inferred from the low-level events visible through the probes.

   Instrumented Connectors instead employ the abstractions defined by an
architecture. These can be high level and domain specific, especially in product
family architectures. Thus, a financial product family architecture could be
expected to define an account abstraction with an owner, a balance, and a set of
operations for manipulating that account. Having access to the behavior of a
system at these levels of abstraction make it much easier to monitor, instrument,
test, and debug that system.

   That is one of the main benefits provided by Instrumented Connectors. The
other is ubiquity. Previous probe technology was usually tied to a single type of
architectural interaction, such as remote procedure calls, network sockets, user
interface messages, or operating system calls. Because most architectures employ
a wide variety of such interaction mechanisms, probe technologies tied to a single
type of architectural interaction could only provide a partial, and normally quite
small, window into a system’s behavior.

Instrumented Connectors

Module

Module
Mediator

Inserted Mediators enable
• Instrumentation
• Interface adaptation
• Filtering
• Value Added Infrastructure

Conduit for all inter-module 
     interactions

• Network Sockets
• Event Broadcast
• Corba
• RPC

Uniform Mediator
Interface Spanning

Integration Frameworks

• Graphic User
      Interface
• File System
• OS Services
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   By contrast, Instrumented Connectors handle the full range of architectural
interactions from very high level domain specific interactions defined by an
architecture to the low level generic interactions defined by the operating system
and windowing interface upon which that architecture runs.

   This is possible because modern operating systems, such as UNIX and
WINDOWS, have adopted a uniform mechanism for programs to obtain services
from the operating system, from their own library, or from another program. This
mechanism is calls to the functions in shared libraries. The level of abstraction
used in those calls is defined by the shared library, and therefore, can become as
high level and domain specific as the designers of those shared libraries desire.
Thus, CORBA is packaged and accessed as a shared library, and the applications
that use it employ the distributed object model it defines.

   Instrumented Connectors are deployed by intercepting the calls to selected
functions within one or more shared libraries. This interception is accomplished
by a Relinker that dynamically redirects all calls to selected shared library
functions to the probes being inserted. Those inserted probes call the original
shared library functions before, during, or after their added monitoring,
instrumenting, testing, or debugging.

   Instrumented Connectors implementations have been built for SunOS 4.01,
Windows95, and WindowsNT without modifying the operating systems or the
applications being instrumented. The details of these implementations differ
significantly because of the differences in how shared libraries are implemented
and accessed on these operating systems. We believe this technique will work for
other versions of Unix and Windows but have not yet done so.

2. Future Work

Currently the programs inserted into an instrumented connector, i.e. the
replacements for particular shared library functions, are manually constructed for
each use. We plan to design a specification language for these probes that utilizes
the abstractions defined by the shared library, and a generator that produces the
code for the probes from those specifications.
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Abstract. This paper presents an approach to obtain the timing
implications introduced by variations in new products of a family.
This is carried out by building a global RMA model of a system
from the individual models of its components.  These individual
models are integrated according to some interconnection
information.

1. Introduction

The correctness of real-time systems depends not only on the logical correctness
of the results, but on the time when they are produced as well. Sometimes, these
systems are developed without considering the timing requirements until the
implementation phase, where they are checked by measuring the execution time of
the final code. This approach has been used because of the lack of expertise on
these kinds of systems and the lack of appropriate tools and theory. Nowadays
there are tools and methods that allow the checking of the fulfilment of the time
requirements on earlier phases, based on the system structure and on estimations
of the execution time of the code [1]. In addition, it is possible to check
analytically the fulfilment of the time constraints. The most well known technique
is rate monotonic analysis (RMA) [2] [3]. In the context of the ARES project, this
technique has been used to evaluate some industrial case studies with time
constraints. The approach taken has been twofold:

• Analyse the software platform of one of the case studies, in order to evaluate
whether it is possible to derive real-time models for applications based on it
[4].

                                                          
1

 This work is partially funded by the ESPRIT program under contract EP20477, ARES
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• Derive RMA models from existing real-time applications. The goal is to
develop a model which analysis gives results that match the behaviour of
existing applications [5].

 Although the results of this work are successful and useful for the associated
companies, the final goal of the ARES project is to provide techniques for
assessing properties of family products, an in particular their timing behaviour.
For this purpose, a tool for this purpose has been designed. Its goal is to extract
RMA models for different products, based on a set of basic components and the
particular configurations of interconnection. In the relevant cases, the variation of
products is mainly related with one or both of the following features:

• The use of different components for performing certain functions, depending
on the final users of the product.

• Different physical models [6], i.e. different hardware architectures. The basic
components are allocated to one or more processors, depending on the
particular functional and time requirements for each product.

In these cases, a similar pattern is found for all the products of a family: there
is a basic set of components that can be used to build a system and that can be
interconnected in different ways. The current approach to extracting the RMA
model of the system is to develop it more or less manually, based on the
knowledge of each of the components. In order to deal with family products, the
RMA approach can be generalised by providing means for generating
automatically the RMA model of the whole system, based on the individual
models of the components, their interconnections, the available resources, and the
scheduling policies of the resources. This approach could improve the analysis of
the timing properties of new products, allowing the developer to get a faster
feedback on the timing behaviour of the whole system and to evaluate easily
different design choices for a new product.

The work reported in this article is related with the development of a method
and a framework for deriving RMA models of products based on the RMA
models of the individual components.

2. An Overview of Rate-Monotonic Analysis

2.1 System Model

RMA is a collection of quantitative methods that enable real-time system
developers to understand, analyse, and predict the timing behaviour of many real-
time systems. RMA is based on fixed-priority scheduling theory [2]. A set of
assumptions about the system are made. The following are the most relevant:

• Concurrent system composed by periodic and aperiodic tasks. Each task is
characterised by its period, deadline and computation time.

• Based on a preemptive and priority-based scheduler (some extensions allow
the analysis of other scheduling policies).
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• Inter-task communication based on a suitable protocol for dealing with
priority-inversion.

• No process may voluntarily suspend itself.

• All processes are released as soon as they arrive.

 Any deviation from this behaviour implies that the RMA technique is not
applicable or that the system worst-case execution time may be too high, as
mentioned above.

 
 2.2.   Basic Concepts
 
 Event sequences

 
 Rate monotonic analysis starts by identifying event sequences. An event is an
instantaneous change of state, and an event sequence is a succession of events of
the same kind occurring at definite times. An event sequence is characterised by
an arrival pattern. There are several kinds of arrival patterns, e.g.:

• Periodic: events are separated by equal intervals of time.

• Irregular : events are separated by unequal, but known, intervals.

• Bounded: an event cannot occur before a minimum separation time has
elapsed after a previous event.

• Bursty: an event can occur arbitrarily close to the previous one, but the
number of events over a specified interval is bounded.

• Unbounded: an event can occur at any time, with no restrictions or bounds.

 Response to an event: actions and resources

 Every time an event occurs the system performs some actions which, together,
make up the response to the event. For this purpose, actions can be ordered in
different ways: sequentially, parallel, etc.

 Actions require some resources in order to be executed. Every time an action
begins or ends, a scheduling decision has to be made in order to allocate resources
to actions. The amount of resources required, and the duration of each action, are
important scheduling parameters. Actions have some attributes that characterise
their timing behaviour:

• Priority : this is a parameter that is generally related to the importance or
urgency of an action, and can be used to resolve resource allocation conflicts.

• Usage: the amount of time that the action uses the resource(s).

• Atomic: an action is atomic if it must be executed from start to end without
releasing the resource.
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• Jitter tolerance: jitter is a deviation between the specified time for input or
output action and the actual time it is performed. Jitter tolerance
specifications may be absolute or relative.

 Another important issue is the allocation policy being used for each resource.
Although different policies can be accommodated, the most comprehensive
temporal analysis techniques assume that a fixed priority allocation policy is used.
For example, when dealing with CPUs, possible policies are fixed priority,
dynamic priority, time slice, and cyclic executive.

 Timing requirements

 Responses can have timing requirements, which usually have the for a time
window relative to the event arrival time, within which its actions must be
performed. When the window starts at zero, the end of the window is called the
deadline of the response. Timing requirements can be:

• Hard : The timing requirement must be met at all times. Failure to perform
the response within the specified window, even a single time, is unacceptable.

• Soft: It is only required that the average response time being within the
specified window.

• Firm : There are both a soft requirement (for a single response instance) and a
hard requirement

A timing requirement is characterised by a response interval.
Once a model of the system including all the above elements has been built, a

number of analysis techniques can be applied in order to assess whether the
temporal requirements can be met or not. The technique range from simple
utilisation bound analysis to response time computation under a variety of
assumptions.

3. Generating a Global RMA Model

In this section, the main steps to follow in order to reach the global model need to
be identified. In particular, the following steps are the most important:

• Determine the connections between the components, i.e. the dependencies
between the events of the various subsystems.

• Specify a physical model [6] of the system determining the systems
resources.

• Specify the allocation of components to resources. As a result, all the
activities in the components have the appropriate resources from the physical
model.

• Model the interconnections based on the resources.

• Assign priorities to the tasks according to some priority assignment policy.
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 The interconnection between models is, in most of the cases, based on the
interconnection of events, i.e. one of the results of handling an event is to raise
another event, which is handled in some other component. In order to support this
it is necessary:

• To reflect this relation in the appropriate table. In some cases, the events’
entries can be collapsed into one, which is fired by the initial event.

• The transmission of the event requires some resources. Taking into account
this, it is necessary to include in the activities table, the appropriate activity
and the required resources.

 The way to model the interconnections between the system’s components
depends on the characteristics of the system under study:

• Monoprocessor/distributed system.  In a monoprocessor system, dependent
events belonging to different components are simply joined together by
concatenating the respective action sequences. This is so because the
signalling method is based on the use of shared memory or on operating
system features. In this case, it is commonly considered that the time for
signalling events in different components is negligible.

 In this case, the global RMA model contains the initial event with its new
action sequence formed by concatenating the action sequences of the related
events. The rest of the attributes of the new event are usually those associated
to the initial one, although it is necessary to consider the attributes of the
other events involved.

 In a distributed system, dependent events are connected by creating a new
action sequence which is made of the action sequences of the dependent
events plus some additional actions which reflect the communication between
the events of components located in different resources (CPUs). In these
cases, it is clear that the notification of an event to another component in a
different CPU requires the use of the resources associated to the
communication media.

• Synchronous / asynchronous components.  To obtain a global RMA
model, it is necessary to consider whether the interconnections are between
synchronous or asynchronous components.  To explain this, let us suppose
that there is an external event, which is handled in a distributed fashion.  This
means that it starts executing on a given processor and continues executing
on others.  When the response in that same processor is completed, there
might be different alternatives for continuing with the distributed response. If
the processors where the subsystems are executed, are scheduled with
different policies, it may not be possible to directly merge the stream of
events. Let us suppose that a system is composed by two subsystems on
different processors. The first one is based on fixed-priority while the second
follows the cyclic executive policy. If the last action for an event is to raise
another event in the second processor, the corresponding sequence of actions
will not be activated immediately. It will be activated when the proper
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synchronous action checks for the occurrence of the event at the start of a
new cycle.

• Allocation policies of the resources.  As before, we can think of the
distributed execution of an external event. If the processors where the
response to the event occurs have different allocation policies, then in the
global RMA model, the distributed response to the event will be broken down
into separate responses to individual events on different processors.
Otherwise, the dependent events will be joined into one event with an action
sequence as the result of joining the action sequences related to the individual
events.

• Level of abstraction.  It is important to note that the level of abstraction at
which the system is described influences the final RMA model of the system.
If the system is described with a low level of abstraction, it is necessary to
consider fine-grain activities that otherwise can be omitted.

4.  Illustration of the Method

This section presents a simplified example (which relies on figure 1) to clarify the
above concepts on how a global RMA model for a system can be built out of the
individual models of the components.

Let us consider a system composed of components A and B. For the sake of
simplicity, this example only deals with an event on each of the components.
Then, it will be presented how it is possible to connect these components for
different monoprocessor and distributed configurations.

In a monoprocessor system, it is assumed that the time taken by component A
to signal B that it should initiate action a2 is negligible.  Therefore, the resulting
action sequence is obtained by directly joining the action sequences of events e1

and e2, which is the complete response of the system to the occurrence of the
external event e1.

In a distributed system, where component B operates asynchronously (event e2
is handled immediately after the completion of a1), the resulting global RMA
model contains just the external event e1 with an extended action sequence.  Being
that components A and B execute on different CPUs, some means are needed for
signalling to component B that it must initiate action a2. As it can be seen in figure
1, this is carried out by adding action amsg, which represents the sending of a
message over a communication link.  The time taken to transmit a message over a
network cannot be considered negligible.  Moreover, the global RMA model will
contain the network media as a new resource and the possible access collisions
should also be considered.

In a distributed system, where component B operates synchronously (event e2
is initiated periodically), the resulting global RMA model contains the events as
separate.  Although e2 depends on e1, e2 will execute periodically if the action
sequence for e1 has completed.
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           Partial RMA model for component A      Partial RMA model for component B

Event Response/Action e2  depends on e1 Event Response/Action
e1 a1 e2 a2

System  Global   RMA model

Monoprocessor Event Response/Action
e1 a1 → a2

Action Resource
a1 CPU 1
a2 CPU 1

Distributed Event Response/Action
asynchronous e1 a1 → amsg → a2

Action Resource
a1 CPU 1
amsg LAN 1
a2 CPU 2

Distributed Event Response/Action
synchronous e1 a1

e2 a2

Action Resource
a1 CPU 1
a2 CPU 2

Figure 1: Possible types of connections of events

5. Tool Support

A new tool called TRASTO (Time Response AnalySis TOol) is being developed.
Its purpose is to support the generation of global system models based on the
RMA models of the system‘s components. The information flow of the process is
shown in figure 2. This tool takes the required information from the situation table
of each component. It also takes input information regarding the interconnection
of the components of the system, its location and the physical model of the
system.

The interconnection information is entered by the designer. It includes
information such as dependencies between events on different components,
specification of the components of the system and its location, policy for the
communication media, and other information. By simply changing the
interconnection information and a few other parameters it will be possible to
compare the timing response of different alternatives for the design of a given
product.
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RMA model
  component 1

RMA model
  component n

Global  model
generation

Global RMA
model

Time
Analysis

Figure 2: Information flow for the global model generation.

...

Interconnection
information

Analysis
results

  TRASTO

This tool is being implemented in Ada. One output will be a global RMA
model of the whole system. This global model will be input to an analysis tool
that will perform the schedulability analysis of the system.

6. Conclusions

So far, we have been working on applying RMA techniques to the different
components of a system or product.  However, it would be desirable to generalise
this technique in order to support future product evolution with the minimum
possible effort.  Therefore, starting from the RMA models of each of the
components of a system, it will be very useful to obtain a global RMA model of
the overall system.

The idea behind this is to achieve a certain degree of automation when building
the global RMA model from the models of the components of the system. This
way, it will be possible to achieve a fast way to test the variations introduced by
new products of a family, and decide whether they adjust to the expected
behaviour and requirements.

By adding information about the interrelations of events of the blocks of a
system, it is possible to automate the process of integration of these RMA models
in order to obtain a global RMA model of the system.  This will allow the user to
have a more general view of the timing behaviour at the level of the whole system.
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We are also developing a tool with which a good degree of automation in this
process is achieved.  The output of this tool is the global RMA model for a
system, which can be input to an analysis tool to obtain measures of its
schedulability.
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1. Introduction 

„Everything should be as simple as possible, but no simpler“, Albert Einstein. 
One of the aims of the ARES project is to „help to design reliable systems with 

embedded software that satisfy important quality requirements, evolve gracefully and 

may be built in-time and on-budget.“ The development process should be designed to 

support this. If we simplify enough, each development process for product families 

looks like this: 

 

Analyse

Domain

Create

Reference

Architecture

Derive

Family member

Architecture
 

 

 

2. Issues 

During this session the following issues were a guideline for the discussion. The first 
set is derived from general observations about the process of  developing 
architectures of  software for product families and product lines. The latter issues 
emerge from the submissions for this session. 
1. How well are current processes working? 

1.1. What processes are currently in use for defining product lines and their 
architectures? 

1.2. What successes and failures are people having with processes for creating 
product lines and product line architectures? 
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1.3. What factors have led to or prevented success with product lines and 
product line architectures? 

1.4. What measures of effectiveness have been proposed and used to determine 
whether or not product line architectures are successful? 

1.5. What processes for creating product lines and product line designs are used 
in other engineering fields, such as electrical, mechanical, aerospace, and 
automotive? 

2. Which stakeholders do we have and what are their concerns? 
3. How should diversity be accommodated? 

3.1. Inclusion of diversity and variation during domain analysis 
3.2. How can we incorporate diversity already in the domain model. Possibilities 

are: inheritance, data-orientation, the use of frames, design spaces, axes of 
variability. What is the value of the variation points, introduced by the book 
Software reuse written by Jacobson, Griss, and Jonsson. 

3.3. How to structure variation at the reference architecture level. 
4. How to evolve legacy systems into product families? 

3. Discussion 

Issue 1 led to a discussion about the reasons for setting up a product line architecture. 
Mass customisation is a first reason for setting up architectures for product families. 
However, there were doubts whether customisation means having one (customisable) 
product or a family. The main reason for customisation is, however, keeping up the 
speed of change, not the amount of variation. The customers will not accept with a 
large amount of new products per year. We tried to get data about the effectiveness of 
using product line architectures, and for techniques deriving them. However, no one 
had such data. 

Issue 2 is connected to the paper of Tom Dolan. He recognises several 
stakeholders, but non of them have specific stakes for dealing with product lines. This 
discussion lead to the question whether technical and organisational issues can be 
separated over the stakeholders. Note that such a separation exists within the 
academia. This discussion led to an agreement under most representatives that it is 
quite important to take organisational issues into account when one sets up a product 
family architecture. 

Issue 3  did not led to a conclusive discussion. All kinds of techniques may help, 
they should be considered before they be applied. Localising may help, but is it 
always possible. Commonality analysis may be a first step towards localisation. 

There was no time to discuss issue 4. 
The session concluded with a citation from Isaac Newton: 

“If I have seen farther than others, it is because I have stood on the 
shoulders of giants.” 

We all know on whose shoulders we stand on. On which shoulder will the future 
generation stand? 
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Abstract This paper identifies the requirements placed on software-
system family architectures by the various stakeholders involved in 
software-system family development. The requirements are 
uncovered by analysing the roles of the various stakeholders in 
software-system family development. The stakeholders will have 
certain roles which pertain to the individual project/product and 
which are typical of all development paradigms. However, those in 
product family development will also have roles arising out of the 
fact that a family is being developed. An important task of the 
software-system family architecture is to support these family-related 
roles. The paper has a practical orientation, and concentrates on 
reporting research results. Further the paper provides an example of 
how the stakeholders and their roles may be allocated in a “real” 
organisation.  
 
Keywords: Software System Architecture, Product Families, 
Stakeholders, Software Development. 

1.  Introduction 

This paper is concerned with software-system family architectures. In particular it is 
motivated by two widely-held opinions in the software development research, and 
industrial communities: 
• Architecture is a key determinant of successful product-family-oriented 

development; 
• The explicit recognition and support of development-stakeholder concerns is 

regarded as an integral part of modern software-development methods. 
The purpose of the paper is to identify the requirements placed on software-

system family architectures by the various stakeholders1 in software-system  

                                                           
1 Stakeholders have been defined [Bennett, 1996] as: “people or things (e.g. other systems) 

that have requirements or expectations about a system”. 
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family development. The requirements have been uncovered by analysing the  
roles of the various stakeholders in software-system family development. The task 
of the software-system family architecture is to support these roles.  

The results reported in this paper are interim deliverables of ongoing PhD 
research by one of the authors in the area of  Software-system family architecture 
assessment. The remainder of the paper is structured as follows: 
• In section 2, product family development is briefly explained, and its dependence 

on multiple development disciplines and product architecture highlighted. Key 
characteristics which must be supported by the architecture are presented. 
Software-system family development is contrasted with more-traditional 
mechatronic2 product families, and the additional challenges for software-system 
family architecture listed. 

• In sections 3 and 4, the various stakeholders in software-system family 
development are identified using sources from literature and experience. 
Subsequently (and based on the findings from section 2) the roles of these 
stakeholders are divided into those that apply to product families and single 
products. Section 5 contains a practice-oriented example will be provided 
illustrating how the various stakeholders and their respective product-family 
roles may be implemented in a real organisation. 

• Section 6 will present the conclusions of the work, and point to follow-on 
research in this area. 

2.  Software-System Family Development 

2.1  Product Families 

A product family has been defined by Meyer and Lopez [Meyer, 1995] as “a set of 
products that share a common core technology and address a related set of market 
applications”. They add that the commonality of technologies and markets leads to 
efficiencies and effectiveness in manufacturing, distribution and service, where the 
firm tailors each general capability to the needs of specific products or niches.  

This important aspect of product families - accommodating specific needs within 
the general product framework - is made more explicit by [Erens, 1996], when 
defining a (mechatronic) product family as a "product concept that is designed for 
a market but caters for the individual wishes of customers by introducing variety 
within a defined product architecture… ". 

Both of the previous definitions emphasise the important fact that product 
families must be defined based on similar market features and a similar technical 
platform supporting those features. The initial presence of such a defined  
technical platform generally means that product families require the existence of a 
                                                           
2 This is an artificial word created in Japan in the 1970’s by combining mechanics and 

electronics [Buur, 1989]. It describes the technologies used in products containing both 
mechanics and electronics, specifically where electronics and software are replacing 
mechanically-coupled mechanisms. 
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relatively mature product/market combination, where all involved parties have a 
good understanding of the market and technical basis of the product family 
[Wortmann et. al., 1997]. 

Another very important aspect of product family development which has 
received more emphasis in the so-called “product line” research effort at the 
Software Engineering Institute [SEI, web], and by the work of Rob Sanchez in 
“strategic product design”, is the long-term, strategic issues relating to the 
leveraging of current product design investments across other family members and 
indeed future generations of the family. In particular product family thinking seeks 
to use some component designs in many models and some components in 
successive generations of products [Sanchez, 1996] to: 
• realise the economies of scale necessary to reduce such component 

manufacturing/development costs; 
• increase component reliability through experience.  

In simple terms, product-family-oriented development seeks to explicitly address 
the issue of how to maximise product-speciality for the customer while minimising 
the resultant variety (or rather its negative effects) for the provider. Additionally 
these issues must be addressed both within and between generations of the family. 
In so doing it is concerned on the one hand with flexibility (accommodating the 
various customer-specific requirements) and on the other with reuse. 

2.2  Product Family – Caracteristics and Consequences 

The following general characteristics of product families can be derived from the 
previous section: 
1. product family producers are market-oriented rather than (single) customer-

oriented;3 
2. the provision of flexibility (to supply variety) within a reuse (to cover costs) 

context is the mantra of product family production; 
3. the strategic alignment of commercial and technical product-family definitions is 

essential for success; 
Looking at some selective consequences of these characteristics for the product 

family producer in turn: 
The market-orientation of product families means that the organisation is 

directed towards satisfying multiple customers. Such organisations direct their 
sales, development and support activities by using internal representatives of the 
multiple external customers and users. The development activity must support all 
aspects of the system life-cycle; and therefore must incorporate the various 
stakeholders and their specialised skills. 

Product families must provide both flexibility and reuse; and represent a 
balancing-act between a customised product and a mass-produced standard  
                                                           
3 This does not mean that family-producers ignore customers; on the contrary they are highly 

customer-focused; but families are designed and built for multiple, a-priori unknown, 
customers (a market) in contrast to a single-product whose development is driven by an 
individual customer order. Single-products may be derived from a family. 
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product. The decision on where to be-flexible/reuse, and how much flexibility/reuse 
to provide, is typically complex and demands comprehensive analysis and 
acceptance by all stakeholders. 

The successful alignment of the commercial and technical family-definition must 
be carried out in the context of multiple stakeholders and their extensive 
communication. The product family architecture is the technical-platform 
underlying the family; and must support the complex family-development activities 
of the various stakeholders. 

Product family architecture is, therefore, (after [Clements, 1995]) an artefact to 
support the various stakeholders in: 
• managing the complexity of the product family; 
• co-ordinating their development activities. 

Any useful study of product family architecture should address the concerns, 
roles, and responsibilities of the stakeholders. 

2.3  Software-System Families 

The principles of general product families have been extensively discussed above; 
this section deals with the family-aspects particular to those cases where the product 
is a software-system. 

A system is defined [Rechtin, 1991] as “a set of different elements so connected 
or related as to perform a unique function not performable by the elements alone”. 
This broad definition allows the terms “system” and “product” to be used  
interchangeably; so a system can be regarded as a product in the previous 
discussion on product families. Further, we can regard a software-system as a 
specialisation of a more-general system, where some of the system elements 
comprise software, and this (software) aspect of the system is important for the 
individual dealing with the system. Thus, A software system is a system containing 
significant (from the point-of-view of those involved with the system) software 
elements. 

The inherent flexibility of software is one of the main reasons for the 
incorporation of software elements in previously non-software system families. In 
fact, software is so flexible that one of the greatest challenges in developing 
software-intensive systems is managing the uncontrolled entrance of variety into the 
system both during and after development.  

From the standpoint of the flexibility and reuse, the following significant 
challenges to product family development are particular to software: 
• The widely-held perception that software is ultra-flexible, means that the 

expectations of users and customers as regards the flexibility that must be 
provided by the software-system family are very high.  

• Software-systems increasingly find application in environments where 
interoperability with other software-systems is expected - this means that software 
producers must adopt a systems-within-systems view of their product, and must 
plan for standard interfacing to relevant external systems. 

• An increasingly obvious customer needs the facility that he/she carry out future-
proof, producer-independent modifications to the software-system after initial 
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purchase and installation. This need is not as great in mechatronic systems; where 
customisation is essentially the responsibility of the supplier, and the customer 
regards the system as a black-box. This fact is illustrated when one considers that 
customers (in general) expect mechatronic systems to be replaced; whereas they 
expect software-systems to be upgraded, thus preserving their own individual 
customisations.  

• The demand (from both producer and customer) to recoup investments across 
system-upgrades; coupled with the dominance of development over production 
costs in software means the reuse across generations is more emphasised in 
software-systems. [Jacobsen et. al., 1997] regard software reuse and family-
oriented development as going hand-in-hand. The challenge of software reuse in 
product family development arises from the immaturity and flexibility of 
software, which has mitigated against off-the-shelf, catalogue-based development 
typical of non-software-component systems. 
 
Some key aspects of software-system families surmised from the discussion 

sofar are: 
• a broader range of “flexibilities” is demanded from software-system families; by 

both the customer (e.g. customisability, extensibility, interoperability) and the 
producer (e.g. configurability, upgradability); 

• the customer has become a much more influential stakeholder; 
• more attention has to be given to integrating with other systems. 

These coupled with the reduced life-cycles typical of software products, means 
that a broader stakeholder discourse must occur, often under strict time-pressure. 

2.4  Software-System Family Architectures 

Thus far the focus has been on the business-related aspects of family development; 
but as the definitions and discussion has show there is a very important technical 
aspect to family development. The remainder of this section will explore the 
technical foundation (architecture) of  the flexibility and reuse business drivers in 
the context of software-system family development.  

Section 2.2 has described a system as a collection of interrelated components. 
The relationships between different elements are the key to the added value of 
systems, but are also the source of system complexity. Those developing systems 
need a (or a set of) representation(s) of the system which helps them to manage its 
complexity - a system architecture [Rechtin, 1991]. In general terms, architecture 
deals with overall system structuring issues such as the organisation of the elements 
into a composite whole, and system-wide control and communication (from [Shaw, 
1996]). This “connected-elements” view of architecture is very common ([Perry 
and Wolf, 1992], [Kruchten, 1995], [Gacek, et.al., 1995]); and has been translated 
into the notions of “modules” (elements) and “interfaces” (connections) by the 
general software community. Extensive discussions on modules are provided by 
[Ulrich, 1991], [Erens, 1997] and [Berard, 1995]; interfacing is well addressed by 
[Bennett, 1996]; and [Jacobsen et. al., 1992], [Jacobsen et. al., 1997]. 
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The authors have previously stated that the architecture was the technical basis 
of the software-system (product) family. Clements ([Clements, 1995]) says that the 
product architecture can allow or preclude many important quality aspects of the 
system: 
• the modifiability of the system, for instance, depends on the degree of 

modularisation prescribed in the architecture; 
• the reusability of common family-features depends on the coupling4 (integration) 

between components; 
• system  performance is heavily influenced by the volume and complexity of 

inter-component communication across the various interfaces; 
• interfacing also dictates how open the system is to integration with other systems 

in the users’ environment.  
Here clear dependencies are established between those key software-system 

family concepts listed in section 2.2 and the main architecture primitives. 
The definition, development, and management of the modules and interfaces 

underlying the family is one of the core activities of software-system family 
development. Module/interface definition, therefore, must be framed in the context 
of the required flexibility it must provide and its role in supporting reuse of family 
elements. As mentioned previously product family development is very much 
focused on the long-term, and the definition of modules/interfaces must also 
account for the fact that the module/interface is regarded as a single unit of 
maintenance and upgrade. The challenge is to define and maintain these 
architectures in the face of complex requirements for flexibility and reuse and in the 
context of a multi-disciplinary organisation. 

3.  A Stakeholder-Oriented Approach to Architecture 

The fact that software-system family requirements are complex, (even 
contradictory), and embedded in a multi-stakeholder, interacting organisation 
means that the technical infrastructure of the family - the architecture - must be 
stakeholder-centric in order to accommodate the reality of family definition and 
maintenance. Among the many definitions of architecture in the literature (the 
breadth of which indicates the lack of maturity of the domain) that by Gacek has 
been selected as being most appropriate for product family-based development, and 
the most inclusive of the various accents emphasised by the architectural research 
community. [Gacek et. al., 1995] states that a software-system architecture 
comprises: 
• a collection of software and system components, connections and constraints; 
• a collection of system stakeholders’ need statements; 

                                                           
4 Coupling (amount a single module “knows” about other modules, [Berard, 1995]) is a 

more-technical term used when describing the strength of connection or dependence 
among system components. Low coupling facilitates module reuse and replacement. 
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• a rationale which demonstrates that the components, connections, and 
constraints define a system, that if implemented, would satisfy the collection of 
system stakeholders’ need statements.  
The same authors further imply the need for architecture representation schemes 

to support reasoning about the architecture’s ability to support stakeholder needs.  
This broad definition of architecture, with reference to requirements and 

rationale, shall be interpreted for the spirit of the sentiment rather than the literal 
content - the authors regard system requirements as being a separate artefact from 
the system architecture; but the two are closely related and should support each 
other, the support being explicitly recorded in the “rationale” aspect of the 
architecture.  

The most notable aspect of the definition is its strong emphasis on stakeholders; 
a pragmatic attempt to place people centre-stage in architecture. This is also a 
realisation of the strong relationship existing between architecture and organisation 
first expressed in Conway’s Law5. [Clements, 1995] builds on this theme by 
reflecting on the important roles of architecture as : 
• supporting stakeholder communication by providing abstractions to manage 

complexity and clearly separating areas to support decision-making; 
• reflecting the development organisation structure (as seen in team structures, 

work assignments) - changes in one imply changes in the other; 
• recording design-decisions to consolidate requirements, drive implementation 

and maintenance, and embodying these decisions in corporate memory so that 
they are reused throughout the family. 

The philosophy in this paper is that before detailing views, representations and the 
various processes associated with architecture, the software-system stakeholders 
and their respective family-based requirements should be identified and used to 
derive the appropriate architectural  properties to support them. 

4.  Software-System Family Stakeholders 

Who are the stakeholders in software-system families?, and how do they interact 
with the architecture? - A non-trivial question given that architecture is all-
pervasive throughout the development process (see e.g. [Hammer, 1996], [Bennett, 
1996]). This section will identify the major software-system family stakeholders; 
and associate with the important family-aspects/activities identified earlier in 
sections 2 and 3. The method used in based on literature review, and practical 
observation from industry. In order to keep the results as general as possible, no 
pre-conceived family-development-method has been used - however as in all things 
organisational (as product families clearly are!) - some peculiarities in approach and 

                                                           
5 Conway's Law: "Organisations which design systems are constrained to produce systems 

which are copies of the communication structures of the organisation." (Datamation 14, 4 
April 1968). 

 



www.manaraa.com

  Stakeholders in Software-System Family Architectures  179 

terminology will inevitable creep-in, and readers are encouraged to actively edit 
findings to suit their own context. 

Stakeholders are defined here as - the set of people providing the organisational 
roles representing the interests of all those entities that have requirements or 
expectations about a system throughout its life-cycle. This definition associates 
organisational roles to the various entities referred to by Bennett, [Bennett, 1996], 
recognising the fact that in market-led organisations, there must be internal-
representatives not only for those entities involved in building the system, but also 
for those using the system. 

Software-system stakeholders may be categorised by their “stake” in the system, 
Table 1 below identifies four categories of development stakeholder (based on 
[Macaulay, 1993]), and gives examples of possible stakeholders ( and their roles in 
architecture) for each (from [Gacek et.al., 1995]). 

 
Table 1: Stakeholder roles -initial 

Stake (abbreviation) Stakeholder roles/concerns 
Financial (F) Customer � schedule and budget tracking 

• risk assessment 
� requirements traceability 

Development (D) Architect 
 
 
 
 
S/W developer 

• complete consistent architecture 
• requirements traceability 
• support for trade-off analysis 
 
• select/develop s/w components 
• maintain compatibility with 

existing systems 
Support/customisation 
(S) 

Maintainer • maintain compatibility with 
existing systems 

• receive guidance on s/w 
modification and family 
evolution 

Usage (U) User • performance, reliability, 
compatibility, usability,.. 

• accommodate future 
requirements 

The strong emphasis on requirements traceability, compatibility with existing 
systems, and accommodation of future needs is indicative of Gacek’s rationale-
based approach to architecture. This contribution has proven useful in identifying 
software-system stakeholders; and the explicit identification of roles is important 
and more revealing than a simple check-box. A feature of this, and indeed much 
other research in software architecture, is the emphasis on single-system 
development.  

But reality bites! The approach towards identifying software-system family 
stakeholders and their roles must reflect the reality that family-oriented research is 
relatively sparse, and that most work is based on non-family environments.  
Further, most software companies (in reality) realise families through delivering 
contiguous product-lines or product-releases in the form of individual, 
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operationally-managed, development projects. So most stakeholders experience 
development of families as a series of related product releases within a strategic 
family framework. For these reasons, the approach for the remainder of the paper 
will be to present the stakeholders and their roles/concerns from both a 
conventional product-development perspective and from the perspective of family-
development. This will provide stakeholders with a link to their “product reality” 
while also clearly indicating those parts of their job are  related to family issues. 

The list in Table 2 below is an extension to Table 1 to address the family-
aspects, and is based on: the characteristics of software-system families presented in 
sections 1-3; the collected experience of the authors; and various contributions from 
literature, notably [Hammer, 1996] and [Jacobsen et. al., 1992]. In the interests of 
brevity the list will provide keywords to identify roles. Rather than presenting an 
exhaustive set of arguments for all stakeholders and roles6 - this paper will confine 
itself to abstracting the general method from that rationale for a specific 
stakeholder, to be provided later. 

 
Table 2: Software-system Family Stakeholder roles  

Stakeholder  
(S take) 

Product roles/concern Family roles/concerns 

1. Customer (F) •schedule and budget tracking •strategic alliance 
•accommodate future requirements 
• flexibility (compatibility, scalabilty) 

2. Customer (D) • risk assessment 
• requirements traceability 

• flexibility (interoperability, 
customisation, extensibility, industry-
standards, state-of-the-art technology) 

3. Customer (S) • reliability 
•maintainability 

•upgradeability 
•use of industry-standards 

4. User (U) •performance, reliability, 
interoperability, usability 

•consistent features across family (e.g. 
UI) 
• increasing levels of performance and 
usability 
•correspondence between system and 
application domain 

5. Business 
management 
(F) 

• track individual product 
relative to 
policy/targets/roadmap 

•Overall family business 
policy/targets 
•market segment 
• release policy/business roadmap 
•make-buy (outsourcing)decisions 
•strategic alliance management 

6. Product 
management 
(F) 

•derive individual product 
commercial targets; 
•product-content/priorities 

•derive product roadmaps 
•defines commercial options/features 
•commercial configurations 

7. Marketing/ 
Sales 
management     
(F) 

•represents Customer(F) 
• individual product 
market/sales plan 
•product compatibilities and 
configurations 

•represents Customer(F) 
•market family aspect 
• returns market info. on preferred 
options 
•must know current/future 
configurations and compatibilities 

                                                           
6 This is reported in an internal research-project report, any specific cases may be discussed 

via correspondence with the authors. 
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Stakeholder  
(S take) 

Product roles/concern Family roles/concerns 

8. Architecting 
(D) 

•represents Customer(D) 
•specify design of product 
within family constraints 
•demonstrate requirements 
traceability and trade-offs 

•represents Customer(D) 
•provide technology roadmap 
supporting business roadmap 
•provide for current/future 
requirements 
•satisfy flexibility and reuse 
requirements (rationale/assessment) 
• reference architecture for family 
evolution 
• technology watching to influence 
business roadmap 

9. Customer 
support 
management 
(S) 

•represents Customer(S) 
•guidance on software 
modification. 
•compatibility with existing 
systems. 
•product maintenance and 
customisation 
• testing 

•represents Customer(S) 
•maintain compatibility with existing 
systems across upgrades 
• receive guidance on s/w modification 
and family evolution 

10. Application 
specialism 
(U) 

•represents user (U) 
•applicational integrity of 
product 
•defines user functions, use-
cases 
•beta-testing 
•user-training 

•represents user (U) 
•applicational integrity of family 
• reviews application domain model 
• indicates future requirements 
•context of family in user-environment 
•user-based options 
features/configurations 

11. Development 
management 
(D) 

•co-ordinate inter-project 
resources 
•provide development 
infrastructure 
•development personnel 
management 

•matches development capabilities to 
family business strategy 
•state-of-the-art tools and techniques  
•evolution of development process. 
•standardise/reuses cpts/practices 
across families. 

12. Development 
project 
Management 
(D) 

•project 
schedule/budget/resource/qual
ity 
• feedback to product/business 
management 
• formal project process 

 

13. Requirements 
analysis (D) 

•analysis of stakeholder 
requirements for product 
• requirements 
specification/management/tra
ceability 

•application domain modelling 
•architecture assessment 
•analyse new requirements in family 
context 

14. S/W design 
(D) 

•select/develop/test s/w 
components to specs. 
•maintain compatibility with 
existing systems 

•use state-of-the-art technology 
•balance of new and reused functions 
•communicate technical issues to 
business/technical management 

15. Purchasing 
Management 
(F) 

•co-ordinates project 
component/services supply  

•assesses development partners 
•provide ideas to reuse/standardise 
purchases across families 
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The table above is very detailed, and is the result of much research and 
discussion. In order to provide an idea of the general process involved; the  
customer stakeholder (previously identified as very important in software-system 
families) will be examined in some detail here. The most obvious feature we see is 
that the customer is very prevalent throughout the list; how did this happen? The 
authors gathered the various possible stakes provided by [Macaulay, 1993]; and 
then went through sections 2 and 3 and isolated keywords from the text and (if 
mentioned) their associated characters. The fact that the customer has a financial 
stake (Customer(F) ) is obvious. Section 2 however talks about “future-proof 
extensions at the customer site independent of the producer”; this is essentially 
development under the responsibility of the customer - so a development stake has 
been identified for the customer (Customer(D) ). Similarly it was stated in section 2 
that “customers wanted individual customisations preserved across upgrades”; 
concern with compatibility across upgrades is normally the task of support - hence 
Customer(S). This process is repeated until the candidate stakeholders have been 
covered. Hereafter remaining keywords are associated with new stakeholders.  

Some of the most  relevant issues from Table 2 are highlighted below: 
• Almost all stakeholders have a role to play in family-development, relating the 

roles here to appropriate architectural representations/structures and discovering 
how these structures shall best support the role is the challenge to software-
system family architecture. 

• Internal stakeholders which represent the multiple external stakeholders (shaded 
grey) of market-oriented development are indicated e.g. Application specialists 
represent the multiple users of the system. 

• The key-issues of software-system families raised in sections 2 and 3 (e.g. 
flexibilities, strategic planning, requirements traceability) have been allocated to 
stakeholders. 

• a clear distinction between family and non-family activities and stakeholders 
(e.g. Development Project Management has no role in family) has been made. 
The list of stakeholders and roles is long, and should be edited/interpreted by 

readers to suit their own organisational context. The next section will provide such 
an example-editing which maps the list to a more realistic organisational setting, 
indicating a generic combination of  stakeholder roles for family management. 

5.  Software-System Family Stakeholders – A Practice-Oriented 
Reductionism 

The number of stakeholders listed in Table 2 is relatively large7 even considering 
the internal stakeholders who replace the customers and users (and could even be 
extended depending on individual organisation structures); particularly when one 
considers the practical concerns of running effective review/team meetings and 
structuring task forces/management-teams in an industrial context. This section 
presents a re-allocation of internal stakeholder-roles to reflect the fact that 
                                                           
7 The list is also considered long in deference to George Miller’s [Miller, 1956] “7 +/- 2” 

theory on the storage limit of short-term human memory. 
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individuals in family-management may fulfil multiple stakeholder-activities in a 
real organisation. These re-allocations are intended to: 
• ease the mapping to common business management-team structures; 
• be useful guidelines; not rigid rules. 

The following combinations of stakeholders have been made from Table 2. 
 
Table 3: practical reallocation Software-system Family Stakeholder roles  

Stakeholder  
(S take) 

Product roles/concern Additional Family roles/concerns 

1.Business 
management (F) 

•as in Table 2 •represents Purchasing 
management(F) 

2.Product 
management (F) 

•as in Table 2 •represents marketing and sales 
management (F) 
•represents Customer (F) 
•represents Application specialism 
(U) 

3.Customer 
support 
Management (S) 

•as in Table 2 •represents Customer (S) 

4.Development 
Management (D) 

•as in Table 2 •represents Architecting (D) 
•represents Customer (D) 
•represents Requirements analysis 
(D) 
•represents s/w design (D) 

The above re-allocation has mapped all internal and external stakeholder family-
roles  from Table 2 onto the 4 key-business stakeholders - Business management; 
Product management; customer support management; Development management. 
This is a realistic organisation of family responsibilities considering industrial 
family-management structures – there are of course others and individual 
organisations will establish their own mapping. As stated previously, regardless of 
the number of people involved, the important point is that the 
concerns/responsibilities of all stakeholders are addressed by the product family 
management-team. The message of Table 3 is that the key-family stakeholders 
listed must possess/have-access-to the skills of those other stakeholders they 
represent at the family-management table. Another important issues is that the 
various activities and responsibilities are clearly allocated to named individuals  
and that this allocation is communicated throughout the organisation. 

6.  Conclusions and Directions 

The intention of this paper  has been to identify the: 
• stakeholders important for software-system family development; 
• the requirements imposed by those stakeholders on the software-system 

architecture. 
both of these intentions have been met, as described in Table 2 above. 
Additionally, the following important conclusions have been derived during the 

analysis described in this article: 
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• The system properties of flexibility and reuse are where software-system families 
differ most from traditional mechatronic product families. In software-system 
families the facts that: 

• customisation of the product, independent of the supplier, will be done 
throughout its life-cycle; 

• interoperability with third-party systems is a competitive necessity; 
• both customer and supplier are constrained to operate in an environment of 

ongoing product upgrades which must support backwards compatibility  
and provide a solid basis for future extensions; 

• porting products to different platforms is necessary to capture customer  
base and follow technical innovations; 

• development costs dominate over operational costs 
means that both flexibility and reuse are prime competitive strategies for 

marketing and developing software-system families. In particular, reuse of modules 
and interfaces between generations of a family is more important for software-
system families than mechatronic families. 
• A major challenge in software-system family development is managing the 

uncontrolled entrance of  variety into the system during its life-cycle. The 
definition, development, and management of modules  and interfaces to support 
flexibility and reuse lies at the heart of managed family evolution. The product of 
such activities is the system-family architecture. 

• The fact that software-systems are subject to ongoing modifications throughout 
their life-cycles, and are increasingly expected to operate in close co-ordination 
with third-party systems means that system-wide qualities (the “ilities”) have 
become very important business enablers. Extensibility, interoperability, 
reusability, scalability, portability are all key competitive aspects of software-
system family business. 

• Most work in architecture to date has concentrated on single-product 
development-oriented systems; work on market-oriented, product-family based 
systems is not so established, particularly with respect to the system 
characteristics mentioned previously. 

• Software-system family development is a stakeholder-driven process; the 
software-system family architecture is the technical realisation of the family 
strategy, and consequently the family architecture should be stakeholder- 
oriented. 

• Stakeholders can be classified according to the nature of their stake in the system 
(financial, development, support, usage) 

• Those stakeholders important for software-system family development have been  
identified; and their family-level concerns described. Further, an allocation of 
activities to a reduced stakeholder-set has been performed in section 5 as a 
guideline towards achieving a manageable, adequately-skilled family 
organisation. These stakeholders and their associated activities represent the 
people and requirements respectively that must be supported by software-system 
family architectures. Determining what and how this support is provided is the 
topic of ongoing research by the authors. 
The work reported here may also serve as a basis for other directions in 

ongoing/future research including: 
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• establishing rules/directions for the explicit mapping of the product family 
responsibilities indicated in this article to stakeholders. The product family 
organisation needs clearly defined roles and responsibilities in order to function 
effectively in light of the broad, interdisciplinary nature of the necessary 
interactions. 

• relating the various stakeholders to the particular aspects of product family 
flexibility and reuse indicated in section 2 of most importance to them. 
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Abstract. A reference architecture implements features that can be
reused, after possible customizations, across members of a system
family. Family members display similarities but they also vary one
from another in user, design or implementation requirements. In this
paper, we describe techniques that allow us to handle certain classes
of variations at the architecture level and to build systems by
customizing the architecture rather than by implementing variations
at the code level. To achieve this end, we model variations within a
domain model and then define how variations in system
requirements affect the configuration of a reference architecture at
different levels of granularity and abstraction. During system
engineering, we customize a reference architecture by selecting
architecture components to be included into the target system, by
customizing component interfaces and, finally, by modifying
components at the code level. In this paper, we show how we model
variations within a domain model and describe the mechanism for
mapping variations into the architecture component interfaces. We
applied described techniques in our domain engineering projects in
the facility reservation and software project domains.

1. Introduction

Domain analysis results in understanding of commonalties and variations in a
domain. A reference architecture implements common features to be reused
across systems in a domain. Function and class libraries, packages (e.g., for
financial systems), Object-Oriented frameworks [6], integration frameworks and
program generators exemplify different types of a reference architectures that
enable different forms of reuse. As systems may differ in certain requirements, a
reference architecture must be customized to reflect variations.

There are a number of reasons why it is preferable to address variations at the
architecture level rather than at the code level. It is more intuitive to think about
variations at a high level first before addressing them at the code level later.
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Business goals and constraints can thus be expressed more intuitively and
developers need not be bogged down by low-level implementation details. Types
of variations that had been addressed during architecture design, can be
implemented by customizing architecture at the design level. Unexpected
variations, can be either implemented in ad hoc way by modifying code or by
evolving the architecture design. Finally, a variation at the architecture level may
be equivalent to many variations at the code level. Thus, less work needs to be
done if we can address variations at the architecture level.

Addressing variations at the design level poses, however, additional challenges
for domain analysis, architecture design and documentation. During domain
analysis, we must fully understand and precisely describe variant requirements.
The very nature of a reference architecture compels us to precisely describe
variant requirements. A reference architecture implements common features to be
reused across systems in a domain. It is meant to be configurable to support
variant requirements. A precise description of variant requirements will allow the
reference architecture to take into account these variant requirements. Then, we
need to provide the architecture with generic mechanisms to handle different
classes of variations. Variations at the architecture level may constrain the range
of lower-level variations. These constraints must be sufficiently documented to
allow the developers to use the architecture properly.

The contribution of the work described in this paper lies primarily in novel
domain analysis methods and software engineering techniques that make it
possible to deal with variations at the design level. During system engineering, we
customize a reference architecture by selecting architecture components to be
included into the target system, by customizing component interfaces and, finally,
by modifying components at the code level. In this paper, we concentrate on
modeling variations and on the mechanism for mapping variations into the
architecture component interfaces. We applied these techniques in domain
engineering projects in facility reservation [2] and software project domains [5].

2. Modeling Variations during Domain Analysis

Requirements have often been categorized into mandatory (i.e. those that are
supported in all systems in a domain), optional (i.e., those that are only required in
some systems), and prerequisite requirements (i.e. those that are needed for other
requirements) [4, 8, 9, 13]. Work has been done on developing various views to
describe variant requirements. For example, in Gomma et al [4], aggregation
hierarchies, object communication, generalization/specialization hierarchies and
state transition diagrams have been extended to capture the similarities and
variations in a family of systems. Parameterization has served as a useful tool for
modeling variant requirements. For example, in Lam and McDermid [8], optional
and variable domain elements are modeled using parameters. In Karhinen et al
[7], a design overlay concept to model variant requirements is implemented by
using SDL (System Definition Language) extended with named parameter slots.
In Natori et al [9], specification patterns are used to represent the variant and
common aspects of a domain. The notation used for these specification patterns
uses parameterization.
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Current domain modeling and requirement engineering methods seem to lack
rigor in describing variant requirements. While formal approaches [3, 12] to
producing a domain model facilitate automated generation of a target system, we
believe that complementary graphical methods to represent variability and
commonality in the domain are also necessary. We believe that this will give the
right balance between ease of use and rigor. In our experience, modeling of
dependencies among requirements in a domain is critical to understanding a
domain.

In our domain analysis work on the FR (facilities reservation) domain, we have
augmented the notations of various modeling notations to model variant
requirements. For example, the ER (Entity-Relationship) model shown in Fig. 1
describes the FR domain in terms of the entities involved and the relationships
among them. The usual ER notation has been augmented to show the mapping
between variant requirements (e.g. Facility Group–OPT) and relationships (e.g.
“consistsOf”) in the ER model. In this and other notations, the notation we use to
document variant requirements is based on [13].

Facility

Reservat ionUser

manages

reserves

reservesMany

consistsOf

manages

consistsOf (Faci l i ty Group–OPT)
reservesMany (Block Reservat ions–OPT)

Fig. 1. Entity-Relationship Model with Variant Requirements

Another aspect of the FR domain that is highly variable is the nature of
permissions granted to various users of a facility reservation system (FRS) to
reserve facilities. In some cases, permissions are given across the board to a
whole group of users; at other times, there may be a need to individually specify
the permissions that each user has. This is further complicated by the presence of
middlemen in some FRSes. These FRSes require a middleman to vet certain user
actions, such as the making of reservations. In other FRSes, users may be able to
make reservations directly without any middlemen. Finally, there are FRSes that
support both cases.

The ER model shown in Fig. 2 models variations in permissions. With this
model, we can use the tuple (Permission, Owner, Middleman, Subject) to keep
track of various permission-related relationships and associated entities (Fig. 3).

We have also augmented the usual state transition diagram notation to model
variant requirements. Fig. 4 gives an example of how we use this augmented
notation to show the change in the state of reservations over time. We have
incorporated variant requirements (e.g. Confirmation by User–OPT) and how they
are mapped onto variant states and transitions.
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User
(e.g. Steven)

Permission
middleman

owner
Facil i ty

(e.g. Block S16,
#04-10)

subject

Fig. 2. Entity-Relationship Model showing Permissions

Requirement Permis-
sion

Owner Mid-
dleman

Subject

(ADD_RES_PERM–ALT1):
Any user can make reservations
for any facility

Add
Reser-
vation

All
users

None All
facili-
ties

(ADD_RES_PERM–ALT2):
Specific users can make reser-
vations for any facility

Add
Reser-
vation

Some
user

None All
facili-
ties

(ADD_RES_PERM–ALT3):
Specific users can make reser-
vations for specific facilities

Add
Reser-
vation

Some
user

None Some
facility

(ADD_RES_PERM–ALT4):
The system shall allow specific
users to make reservations for
specific facilities through a spe-
cific middleman

Add
Reser-
vation

Some
user

Some
user

Some
facility

Fig. 3. Sample Permission-related Requirements

Legend:
CDT=cur ren t -da te /
         t ime
RSDT=reserva t ion
       start-date/t ime
REDT=reserva t ion
        end-date/ t ime

Reservat ion
Deleted

CDT=REDT

CDT=REDT

Reservat ion
Deleted

Reservat ion
Deleted

CDT=RSDT

Reservation
Pending

Reservation
Idle

Reservation
Deleted

Reservation
Active

Reservation
Completed

Reservat ion  Pend ing (Conf i rmat ion  by  User–OPT)
Conf i rmat ion (Conf i rmat ion by  User–OPT)
CDT=REDT (Recur r i ng  Reserva t i on–OPT)

Confirmation

Fig. 4. State Transition Diagram with Variant Requirements
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3. System Engineering Process Model

An architecture is defined by a collection of system components and
interactions among those components [11]. Unlike an architecture for a specific
software system, a reference architecture must be flexible and re-configurable in
terms of component structure, component interfaces and component
implementation. We engineer a system by customizing a reference architecture,
that is by selecting architecture components, adding more components,
customizing component interfaces and modifying component implementation to
meet requirements of a specific system we wish to build. Object-Oriented
frameworks [6], Bassett’s frames [1] and table-driven architectures (such as in
compiler-compilers) exemplify different approaches to designing and customizing
reference architectures. In OO frameworks, we use inheritance to customize
abstract classes that form the core of a framework. Frame components, on the
other hand, include code intermixed with pre-processing commands such as insert,
select or delete. Customization of frames is done by executing pre-processing
commands. In our domain engineering projects, we use a combination of the
inheritance, frame processing and table-driven methods to represent and
customize reference architectures.

Customize
Componen t
Interfaces

Select
Exist ing
Compo-

nents

Customize
Componen t

Internals

Customization
Selection

Fig. 5. Activities in System Engineering

Fig. 5 depicts the activities involved in system engineering. Based on specific
requirements, we begin by selecting a set of existing components from the
reference architecture. This can be achieved using a configuration management
system, a higher level mechanism such as PCL [12], or in our case, a frame
processor [1]. The next step is the customization of component interfaces and
component internal workings. In addition to inheritance, we adopted the frame
processing mechanism to achieve component interface customization. In the next
section, we describe this mechanism in detail. How we customize the internal
workings of components depends on the techniques used in the design of a given
component. For example, we can customize component internals through
parameters, by implementing methods in derived classes, by modifying data in
tables driving generic code, or by pre-processing.

4. Customization of Component Interfaces

In many instances, we must customize architecture component interfaces to reflect
specific variant requirements a given system is to satisfy. In the facilities



www.manaraa.com

Handling Variant Requirements in Software Architectures      193

reservation (FR) domain, we are experimenting with frames and Object
Management Group’s Interface Definition Language (IDL) [10] to achieve this.

Prior to system engineering, we developed a reference architecture model
(Fig. 6)for the FR domain. Based on this model, we also developed a system
interface specification (Fig. 7) containing interface declarations that are most
common among systems in the FR domain that we studied. This system interface
specification is written in IDL. For example, our system interface specification
contains interface declarations for important data structures for keeping track of
facility and reservation data, as well as various operations that will manipulate
this data.

Bill ing Component
– compute charges based

on input data

Statistics Component
– compute statist ics on

input data
– display statist ics
– produce statist ics reports

E-mail Component
– sends notif ications to

users
– handles acknowledge-

ments

Core Component

User Management Component
– adds, removes, modif ies exist ing users' detai ls

Facility Management Component
– add, remove, modify faci l i ty detai ls

Reservation Management Component
– adds, removes reservations for faci l i t ies

Opt ional  ComponentLegend:

Fig. 6. Reference Architecture Model for FR Domain

We partitioned the system interface specification into a number of generic
interface declaration blocks (IDBs). Each generic IDB takes the form of a single
frame and contains interface declarations that perform a particular function. Using
a frame processor, we configured these generic IDBs based on specific system
requirements and mappings that dictate how requirements should translate to
interfaces. The result is a set of specialized IDBs that are eventually combined
into a single set of interfaces for the system. This set of specialized interfaces
specifies a particular range of functionality for an FRS.

As an example of component interface customization, consider the case where
an FRS is to allow any user to make reservations for any facility. This is the
“(ADD_RES_PERM–ALT2)” requirement in Fig. 3. Sample Permission-related
Requirements. To accommodate this requirement, we analyzed the generic IDBs
to determine how they should be augmented or modified in order to provide the
functionality required by this requirement. Then, we designed a specification
frame (SPC) [1] that performs these modifications with the appropriate frame
commands. We also annotated parts of the SPC with the requirement name (in C-
style comments) to facilitate the traceability of requirements. An excerpt of this
SPC is shown in Fig. 8.
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module FRSModule {
typedef long FacNo;
typedef long ResNo;
struct TimeDateStruct {

string date;
string time;

};
struct FacStruct {

FacNo facID;
};
typedef sequence<FacStruct> FacSeq;
struct ResStruct {

FacNo facID;
TimeDateStruct start;
TimeDateStruct end;

};
interface FRSInterface {

ResNo     addReservation(in FacNo facID, in ResStruct
resData);

ResStruct getReservation (in ResNo resID);
boolean   cancelReservation (in ResNo resID);
FacNo     addFacility (in FacStruct facData);
FacStruct getFacility (in FacNo facID);
boolean   removeFacility (in FacNo facID);

};
};

Fig. 7. Excerpt from System Interface Specification

.% Modify the Type Declarations

.COPY FRS_TYPE_DECL.F

. INSERT-AFTER TYPE_DECL
typedef long PermNo; // (ADD_RES_PERM-ALT2)
struct PermStruct { // (ADD_RES_PERM-ALT2)
    PermNo permID;
    UserNo permOwnerID;
};
.END-COPY FRS_TYPE_DECL.F
.% Modify the Interface Declarations
.COPY FRS_INT_DECL.F
. INSERT-AFTER FRS_INTERFACE
PermNo addPermission (in UserNo permOwnerID);

// (ADD_RES_PERM-ALT2)
PermStruct viewPermission (in PermNo permID);

// (ADD_RES_PERM-ALT2)
boolean removePermission (in PermNo permID);

// (ADD_RES_PERM-ALT2)
.END-COPY FRS_INT_DECL.F

Fig. 8. Excerpt from SPC for "(ADD_RES_PERM–ALT2)" Requirement
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5. Concluding Remarks

In this paper, we have discussed some aspects of handling variant requirements in
reference architectures. We argue that variations should be addressed at the
architecture level rather than at the code level. It is more intuitive and usually
reduces the amount of configuration work that has to be done. It is, however,
necessary to give a precise description of variant requirements if we are to address
them at the architecture level. We have outlined some novel domain analysis
methods and software engineering techniques that make it possible to deal with
variations at the design level. These techniques include object-oriented methods,
data-driven techniques and frame technology. We have briefly discussed how we
have applied these techniques in our domain engineering work in the facility
reservation domain.
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Abstract:  The realization of software projects can be significantly eased by
extending the focus of reuse to architectural aspects instead of concentrating on
separate software elements. Yet in any case, operational techniques are required
to support the retrieval and selection of reusable items. To this end, we extend
on the concept of design spaces which allows to describe the relevant properties
of software elements in a semi-formal way. Moreover, we show how the
concept of extended design spaces can be deployed in tools supporting compo-
nent- and framework-based software development.

1 Introduction
The reuse of software elements promises to yield the highest benefit when applied in
the context of a specific application domain. There are several reasons for this obser-
vation. Usually, the domains are well understood by domain experts; i.e., there exists
profound knowledge and experience concerning the development of applications. The
experts agree on commonly accepted base abstractions upon which applications can
be built, and there is only limited variation of products and processes to be applied. 

One important item for reuse is the set of proven system architectures for applications
of a certain domain. This is completely along the lines of the current trend towards
reusing higher level abstractions rather than just recycling code. Most notably, by
deploying a proven system architecture during realization of a new application, some
of the most crucial structural design decisions can be reused. But because reusing one
single architecture for each application may be as unfavorable as building each appli-
cation from scratch anew, there must be a way to support the selection of an appro-
priate architecture for a specific application. As a prerequisite, a technique for
classifying system architectures is required. For this purpose, the concept of design
spaces, as presented by Lane in [11][12], is a promising approach. Design spaces
provide a semi-formal technique for both expressing architectural issues and assessing
the requirements of the application under development. They moreover allow to
leverage domain-specific knowledge, i.e., experiences made during the realization of
earlier software projects, by providing design rules for subsequent projects. 
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In this paper, we present our approaches for architecture-centric software development
based on the reuse of software components and frameworks. In order to construct
tools for actively supporting reuse of these elements, we propose extensions to the
original concept of design spaces. This technique promises to provide a contribution to
reducing the overall development effort and increasing the quality of new applica-
tions.

After a description of the two approaches to architecture-centric software develop-
ment, the paper continues with an introduction of the original design space technique.
In the subsequent section, we propose an extension to the concept of design spaces.
Thereafter, the deployment of extended design spaces in the context of both compo-
nent- and framework-based development approaches is discussed. The paper
concludes with a report on the current status as well as further work in this area.

2 Architectural Reuse with Components and Frameworks
A significant part of the overall potential of software reuse lies in reusing abstract
architectures in addition to separately viewed software artefacts. In this respect, we
currently investigate two different approaches. 

The first one is based on reusing software components, i.e., software artefacts ranging
from small classes to bigger modules that were designed for reusability. Supporting
reusability implies components to have delimited functionality, a well-designed
“general purpose“ interface, and a clear and precise description of their purpose and
properties [5][8]. Conventional approaches to component-based reuse often assume
the existence of implicit component models [2][14] like objects communicating by
message passing. In our approach, however, we see individual components as related
to a specific architecture, i.e., associated with structural properties or constraints. For
example, components often cannot be freely combined, but have dependencies sugge-
sting a certain architecture and precluding certain other combinations. In order to
provide sufficient flexibility for their deployment in a broad range of applications, we
concentrate on generic components that comprise variants of the same functionality. A
tool-supported instantiation process then allows to tailor the components to the
specific application’s needs. 

In our second approach, the items of reuse are frameworks, i.e., semi-complete solu-
tions based on a specific architecture for the given application domain [4][10]. Frame-
works implement default behaviour common to all solutions in the domain, while
leaving gaps for application-specific functionality. Applying a framework during the
realization of a software project thus means adapting the existing code and adding
missing functionality, thereby instantiating the framework’s architecture. 

For both approaches, a comprehensive and precise description of the properties of the
reusable items is required that comprises e.g. their interface, their purpose, and the
hooks that are to be (re-)implemented. Essential to this description is a representation
of architectural aspects—implicitly by dependencies between components or expli-
citly as implemented by a framework. A well-known technique to describe architec-
tural issues is the concept of design patterns [6]. Design patterns describe solutions to

198 Lothar Baum et al.
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general or domain-specific problems as a set of objects together with their intercon-
nections. However, rules for applying such patterns are stated informally, thus making
tool support difficult or impossible. Furthermore, only that part of an overall architec-
ture actually following agreed-upon patterns can be described. Architecture descrip-
tion languages, e.g. [3][7][13], provide a more general technique to capture structural
aspects of software systems. However, they provide no methodical guidelines for
deploying the described architectures in specific software projects.

Being able to represent architectural aspects is a prerequisite for any technique for
capturing design rules. Consequently, it is also a prerequisite for any method to find a
proper system architecture for a given set of requirements [15]. In that respect we
were looking for a technique to describe design rules in a way that can be exploited by
tools to support the overall design process. This question is closely related to the
problem of selecting the appropriate items from a pool of reusable artefacts. To this
end, a precise description of their semantics is required—a general problem of reuse
which is currently often “solved“ by informal text. More formal approaches can only
be found in some well-understood and rather limited areas. As an example, the OMG
currently investigates several proposals for formally capturing business semantics [9]
for the new Business Object Facility (BOF). 

None of the presented techniques can in our opinion give a comprehensive solution to
the problems of requirements specification, description of semantics and architecture,
and capturing of design rules. The concept of design spaces appears to be a pragmatic
and promising approach to address these problems collectively. 

3 The Concept of Design Spaces
The development of a system belonging to a given application domain always takes
place in a plethora of design choices. In the case of a multimedia server, e.g., one
design choice concerns the handling of data streaming requests if transmission

resources are short1. Possible alternatives are denial of the request, delivering with
reduced but guaranteed quality, best effort transmission, or degradation of all current
streams. The entirety of such design choices along with the possible alternatives make
up the domain’s multidimensional design space [1][11][12]. The dimensions of a
design space are related to single design choices, each describing possible variations
in one system characteristic. Each dimension enumerates possible alternatives, called
categories. For example, the design alternatives introduced before are categories in
the dimension of handling requests in case of resource shortage.

Some of the dimensions—as in the example above—address the observable behaviour
or the functionality of the system, i.e. what the system does, and at what performance.
The sub-space spanned by these dimensions is therefore called the functional design
space. Most of the dimensions in the functional design space directly correspond to
application requirements. The remaining dimensions cope with the system’s structure,
i.e. how the system achieves its tasks. This sub-space is called the structural design

1 The examples in the following discussions will be oriented at multimedia server functionality,
one of our domains of interest.
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space. It represents the architectural choices and decisions to be made during system
design. For example, the decision whether to choose a monolithic or a distributed
implementation for an application, the communication paradigm used in a distributed
system, or the strategy used for scheduling processes are dimensions in a structural
design space.

In most cases, the dimensions are not independent. As an example, giving guarantees
about the quality of data transmission requires real-time scheduling capabilities of the
multimedia server resp. the underlying operating system. Such dependencies can be
expressed by weighted correlations between two or more categories of different
dimensions (cf. figure 1). Correlations describe how design alternatives will fit toge-
ther in one system. Correlations of positive weight mean that the categories form a
good match, whereas negative correlations imply that the categories cannot or should
not be used in conjunction.

Correlations between categories in the functional design space and categories in the
structural design space can be used for mapping functional requirements to structural
design aspects. In that sense, they can be interpreted as design rules helping the “jour-
neyman designer“ [12] to choose adequate designs for a given set of requirements.
One possibility to derive such design rules is to compare system implementations
according to their design space classification. If e.g. successful system implementa-
tions for similar functional requirements appear in clusters of the structural design
space, this might be a hint that the deployed architectural alternatives are advan-
tageous in the given context.

Correlations within the structural design space represent design consistency
constraints. They provide a facility to prevent bad design decisions by explicitly
describing the advantages and disadvantages of different structural combinations.
Such constraints can be derived from existing system architectures as well.

4 Extended Design Spaces
In order to effectively deploy the concept of design spaces in architecture-centric soft-
ware development processes, we propose some extensions to make the approach more

structural design spacefunctional design space

Fig. 1: Functional and structural design space
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precise and manageable. A major problem is that the semantics of correlations are not
clearly defined. Moreover, there is no way of structuring design space descriptions,
which makes them complex and hard to understand. In order to overcome these
problems, we refined some of the key elements of the design space concept and intro-
duced new types of dependencies between dimensions. 

As a basis for providing a more precise semantical definition of the key elements, a
typing scheme for the design space dimensions is introduced. Simple types are enume-
rations of discrete alternatives as already introduced in the original concept, or conti-
nuous datatypes like Integer or Float. The simple types can be used to define
compound datatypes like sets and intervals. These compound types facilitate the defi-
nition of correlations and their processing in tools. They moreover allow the characte-
rization of reusable, generic software artefacts whose exact properties—e.g.
concerning their timing behaviour—are not fixed but will be determined only during
the implementation of applications using them. Existing applications, however, can be
characterized by at most one category from each dimension.

In addition to correlations representing design rules and design consistency
constraints, the extended design space concept also allows correlations between
dimensions in the functional design space. They represent interdependencies between
requirements (e.g., trade-offs between contradictory goals) that can be used to denote
consistency constraints for the requirements specification.

The concept of extended design spaces moreover comprises a refined definition of the
notion of correlation itself, as shown in figure 2: Correlations are relationships
between categories from different dimensions of the design space. Each side of a
correlation may be a boolean expression over the values of specific dimensions, e.g.
“category A of dimension 1 or category B of dimension 1 and category C of dimen-
sion 2“. In this way, arbitrarily complex correlations can be described.

There are two qualitatively different kinds of correlations. Strong correlations express
either complete incompatibility or strict dependence of categories. Weak correlations,
on the other side, describe the fact that the combined selection of some categories is
advantageous or disadvantageous, i.e., these properties can often respectively only
rarely be observed together in systems of the given application domain. For weak
correlations, we propose a quantification on a scale ranging from -1 to +1. A value of
+1 indicates that the respective categories can favorably be used together, while a
value of -1 expresses that the categories should not be combined in one system. Zero-
correlations—which can be omitted—indicate that the categories are independent of
each other.

0.8 Dim3.C

Dim1.A

Dim2.BDim2.C

Dim1.B

Dim1.A

Dim3.E

Dim3.D

-0.5

Fig. 2: Examples of correlations
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Correlations may either be symmetrical or asymmetrical. The latter kind of correla-
tions describes relationships of the type “if the characterized system has property A,
then it should also have property B“. Symmetrical correlations, on the other side,
describe a kind of equivalence: The existence of a symmetrical correlation of 1.0
between two categories A and B expresses that it is highly probable that a system has
either both properties or none of them.

The remaining extensions to the concept of design spaces are intended to provide
means for better structuring the design space description. One of these extensions
permits the defininition of groups of design space dimensions referring to some
distinct part of the overall system functionality, e.g. fault tolerance or scalability
aspects. This is primarily intended to make the design space more manageable. It
allows to emphasize that certain classification criteria are closely related, and thus
facilitates understanding of the design space by the application developers.

Another structural extension allows to explicitly state that certain dimensions are only
applicable to a subset of all systems belonging to the respective domain. To this end, a
concept of hierarchical dependencies is introduced. Such a dependency expresses that
if a system has certain properties—modelled by a specific category of the higher-order
dimension—then it cannot be sensibly characterized according to the dependent
dimension. As an example, consider a dimension describing the variety of communi-
cations mechanisms that can be used in the implementation of distributed systems. An
application can only sensibly be classified according to this dimension if it is indeed
implemented as a distributed system—which may be modelled by a specific category
of a structural design space dimension. In this way, it is possible to tailor the taxo-
nomy used for classifying systems to the characteristics of the application domain.

One more augmentation is the possibility to define an order on the design space
dimensions, indicating in which sequence they should be applied. This allows the
domain experts to record their experience that classifying an application according to
dimension A is easier than classifying it according to dimension B. The subsequent
selection of a category in dimension B may then be eased by correlations narrowing
the set of available alternatives, e.g. because some design choices should not be used
in conjunction with those properties already selected.

5 Using Extended Design Spaces for Architecture-Centric Software 
Development
The development of applications in a specific domain can be significantly eased by
applying the reuse techniques introduced above. On the one side, the deployment of
software components allows to reuse distinct parts of the application’s overall functio-
nality. On the other side, architectural reuse comprises design decisions, structural
building blocks like design patterns, or complete system architectures, which in our
approach are made available in the form of highly-specialized frameworks.

The concept of extended design spaces enables semi-formal specifications of both a
certain application’s requirements and the properties of reusable items. This is a
suitable starting point for addressing the problem of retrieving and selecting appro-
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priate reusable artefacts for a given task, one of the most crucial issues for all reuse
techniques. It is complicated by the fact that the properties of reusable items like
components or entire frameworks are not precisely known before their instantiation or
deployment in an actual implementation. The introduction of composite types like sets
provides a solution to this issue, thus allowing tools to retrieve a set of possibly
adequate items which can then be presented to the developer. Moreover, at this stage,
the correlations between dimensions in the functional design space can be evaluated to
ensure that the selection of reusable items is based on a consistent set of requirements.

In more detail, reusable components may be retrieved by comparing the design space
classification of the application’s requirements to the characterizations of available
components. Similarly, in the case of reusable frameworks, the structural recommen-
dations obtained from evaluating the correlations indicating design rules can be
matched against the characterizations of the available frameworks. In this way, the
selection of reusable artefacts can be performed rather seamlessly and to a large
degree based on the requirements specification—i.e., in an early stage of the software
project. This is especially important in architecture-centric development processes, as
the various development steps can then be driven by and towards the abstractions
identified by the system architecture. Moreover, the concept of extended design
spaces combines the facility for selecting reusable items with constructive support for
the implementation of new functionality, if no reusable items for a specific purpose
can be found. In that case, the structural recommendations gained by evaluating the
correlations facilitate the implementation of the missing functionality, because the
difficult transition from requirements to design decisions was—at least partly—antici-
pated. 

To effectively deploy the concept of design spaces in architecture-centric software
development processes, tools are required that offer support beyond simple presenta-
tion of the design space for the respective application domain. The construction of
such tools is facilitated by the description and structuring techniques introduced
above. By using them, domain experts can provide customized development processes
capturing their experience about how software should be realized in the specific appli-
cation domain.

6 Current and Further Work
In order to validate the concept of extended design spaces, we are currently working
on classifying a set of systems from the building automation domain according to an
extended design space for this application area. Then, the hints obtained from the
correlations between the design space dimensions are compared to the characteristics
of the existing systems. Mismatches are indications for inadequacies or mistakes in the
design space description. Either some correlations are actually wrong and need to be
corrected, or the design space omits to consider certain relevant characteristics of the
scrutinized systems that have to be investigated in more detail. This approach can be
further generalized to a methodology for iterating and refining design spaces. In this
way, experiences from past software projects can be reused during realization of new
applications.
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In order to deploy the concept of design spaces for actively supporting reuse-based
software development, appropriate tools for classifying systems and capturing require-
ments have to be made available. The implementation of such a tool is currently in
progress in our group. The next step will then be to integrate design spaces in an
operational way into our architecture-driven development approach. It is our long-
term goal in this field to devise a process model for reuse-based software development
centered around the concept of extended design spaces.
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$UFKLWHFWLQJ�IRU�'RPDLQ�9DULDELOLW\
-DFTXHV�0HHNHO���7KRPDV�%��+RUWRQ���&KDUOLH�0HOORQH�

�0RWRUROD��,QF���&RUSRUDWH�6RIWZDUH�5HVHDUFK�	�'HYHORSPHQW
%R\QWRQ�%HDFK��)/

�0RWRUROD��,QF���,QWHJUDWHG�6RIWZDUH�3URGXFWV
%R\QWRQ�%HDFK��)/

�'HSW��RI�&RPSXWHU�6FLHQFH�DQG�(QJLQHHULQJ��)ORULGD�$WODQWLF�8QLYHUVLW\
%RFD�5DWRQ��)/

$EVWUDFW�� 7KLV� SDSHU� DGGUHVVHV� KRZ� GRPDLQ� DQDO\VLV� VHUYHG� WR� KHOS
FUHDWH� UHXVDEOH� DUFKLWHFWXUHV� DQG�FRPSRQHQWV� LQ� WKH�GHYHORSPHQW�RI� D
UHDO�WLPH� HPEHGGHG� V\VWHP�� 7KH� UHVXOWLQJ� SURGXFW� LV� 0RWRUROD¶V
)/(;70� .HUQHO�� D� VHW� RI� FRPSRQHQWV� WR� VXSSRUW� GHYHORSPHQW� RI
SRUWDEOH� ZLUHOHVV� FRPPXQLFDWLRQ� GHYLFHV�� 7KH� SDSHU� GLVFXVVHV� WKLV
H[SHULHQFH� LQ� WHUPV� RI� GLVFRYHULQJ� DQG� GHYHORSLQJ� UHXVDEOH
IUDPHZRUNV�IRU�WKLV�GRPDLQ��2XU�DSSURDFK�WR�LQFRUSRUDWLQJ�WDLORUDELOLW\
LQWR� WKHVH� FRPSRQHQWV� LV� GHVFULEHG� DQG� FRPSDUHG� ZLWK� D� UHFHQWO\
SXEOLVKHG�DSSURDFK�
.H\ZRUGV�� 5HXVH�� GRPDLQ� DQDO\VLV�� IUDPHZRUNV�� DUFKLWHFWXUH�
WDLORUDELOLW\�

�� ,QWURGXFWLRQ

0DQ\�FRPSDQLHV�KDYH� ORRNHG� WRZDUGV� VRIWZDUH� UHXVH�DV�D�ZD\�RI� UHGXFLQJ�SURGXFW
F\FOH� WLPH�� DOORZLQJ� LQGXVWU\� WR� GHOLYHU� QHZ� SURGXFWV� WR� PDUNHW� DV� TXLFNO\� DV
SRVVLEOH�� ,Q� WKLV� SDSHU� ZH� GHVFULEH� D�0RWRUROD� SURMHFW� WKDW� XVHG� D� GRPDLQ�VSHFLILF
HQJLQHHULQJ� DSSURDFK� WR� GHYHORS� D� VRIWZDUH� SODWIRUP� IRU� D� IDPLO\� RI� RQH�ZD\� DQG
WZR�ZD\� SDJHU� SURGXFWV�� $Q� HDUOLHU� SDSHU� >�@� GHVFULEHG� WKLV� SURMHFW� DQG� SURYLGHG
GHWDLOV� RQ� KRZ� GRPDLQ� DQDO\VLV� ZDV� XVHG� WR� GLVFRYHU� DQG� GHYHORS� UHXVDEOH
IUDPHZRUNV�� 7KLV� SDSHU� SXWV� DQ� HPSKDVLV� RQ� WKH� W\SH� RI� YDULDELOLW\� IRXQG� LQ� WKLV
GRPDLQ��DQG�GHVFULEHV�WKH�GHVLJQ�VWUDWHJLHV�XVHG�WR�VXSSRUW�WKLV�YDULDELOLW\�

7KH� SURGXFW� GHYHORSHG� E\� WKLV� SURMHFW�� WKH� )/(;70� .HUQHO� �KWWS���
ZZZ�PRW�FRP�0,06�063*�,63�SURGXFWV�IOH[NUQO��� SURYLGHV� VRIWZDUH� FRPSRQHQWV
WKDW�FDQ�EH�XVHG�WR�TXLFNO\�EULQJ�QHZ�ZLUHOHVV�FRPPXQLFDWLRQV�GHYLFHV�EDVHG�RQ�WKH
)/(;70�3URWRFRO��VXFK�DV�SDJHUV�� WR�PDUNHW��7KH�FRPSRQHQWV�DQG�VXEV\VWHPV�WKDW
PDNH�XS�WKLV�SURGXFW�XVH�D�VHW�RI�ZHOO�GHILQHG�$3,V�WKDW�DOORZ�GHYHORSHUV�WR�FUHDWH�D
FXVWRP�RSHUDWLQJ�V\VWHP� WKDW�PDQDJHV� ,�2�GHYLFHV��PHVVDJH�GDWD�� DQG�RWKHU� V\VWHP
UHVRXUFHV� LQ� D� SRUWDEOH� ZLUHOHVV� GHYLFH�� $� GHYHORSHU� FDQ� XVH� )/(;70� .HUQHO
FRPSRQHQWV� WR�EXLOG� D�SURGXFW�ZLWKRXW� KDYLQJ� WR�GHDO�ZLWK� WKH� IXOO� FRPSOH[LWLHV� RI
WKH�)/(;70�3URWRFRO�IRU�ZLUHOHVV�FRPPXQLFDWLRQ��7KH�FRPSRQHQWV�VXSSRUW�YDU\LQJ
OHYHOV� RI� IXQFWLRQDOLW\�� WKXV� PDNLQJ� )/(;70� .HUQHO� D� VFDODEOH� DSSURDFK� IRU� WKH
Frank v. d. Linden (Ed.): ARES ’98,  LNCS 1429, pp. 205-213, 1998. 
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GHVLJQ� DQG� LPSOHPHQWDWLRQ� RI� GHYLFHV� WKDW� VSDQ� D�ZLGH� UDQJH� RI� OHYHOV� LQ� D� WLHUHG�
IDPLO\�RI�SURGXFWV��

$V�GHVFULEHG�LQ�>�@��WKH�SURMHFW�VXFFHHGHG�LQ�HIIHFWLYHO\�PDSSLQJ�GRPDLQ�PRGHO
UHSUHVHQWDWLRQV� WR�GHVLJQ�OHYHO�FRPSRQHQWV� LQ� D�ZD\� WKDW�SURGXFHG� IUDPHZRUNV� WKDW
FDQ�EH�XVHG�WR�VXSSRUW�SURGXFW�GHYHORSPHQW�LQ�WKLV�GRPDLQ�

,Q� DGGLWLRQ�� WKH� SURMHFW� DGGUHVVHG� WKH� QHFHVVLW\� RI� VXSSRUWLQJ� WDLORUDELOLW\� WR
DOORZ�WKH�)/(;70�.HUQHO�DUFKLWHFWXUH�DQG�FRPSRQHQWV�WR�EH�HDVLO\�DGDSWHG�WR�PHHW
WKH�UHTXLUHPHQWV�RI�QHZ�SURGXFWV��2XU�SUREOHP�GRPDLQ�OHQGV�LWVHOI�WR�DQ�DQDO\VLV�RI
WDLORUDELOLW\� UHTXLUHPHQWV� WKDW� LV� VLPLODU� WR� WKH� DSSURDFK� UHFHQWO\� GHVFULEHG� E\
'HPH\HU� HW�� DO�� >�@� +RZHYHU�� D� VRPHZKDW� GLIIHUHQW� VROXWLRQ� WR� WKHVH� LVVXHV� ZDV
UHTXLUHG� GXH� WR� FRQVWUDLQWV� RQ� KRZ� UHXVDEOH� FRPSRQHQWV� FDQ� EH� LPSOHPHQWHG� IRU
HPEHGGHG�V\VWHPV�VXFK�DV�D�SDJHUV�

%HIRUH�GHVFULELQJ�KRZ�WKLV�H[SHULHQFH�KDV�OHG�WR�WKHVH�LQVLJKWV�DERXW�IUDPHZRUN
GHYHORSPHQW�DQG�WDLORUDELOLW\��WKH�SDSHU�GLVFXVVHV�WKH�SURMHFW�DQG�WKH�GRPDLQ�DQDO\VLV
PHWKRGV�XVHG�

�� 7KH�3URMHFW�DQG�,WV�*RDOV

$V� QRWHG� HDUOLHU�� WKH� JRDO� ZDV� WR� SURGXFH� D� VRIWZDUH� DUFKLWHFWXUH� DQG� D� VHW� RI
FRPSRQHQWV� WR� DOORZ� QHZ� SURGXFWV� WR� EH� EURXJKW� WR�PDUNHW�PRUH� TXLFNO\�� &RGH� LQ
WKHVH�SRUWDEOH�ZLUHOHVV�FRPPXQLFDWLRQV�GHYLFHV�LV�ZULWWHQ�LQ�WKH�&�ODQJXDJH�DQG�QRW
&���� GXH� WR� FRQVWUDLQWV� LQ� WKH� HPEHGGHG� V\VWHP¶V� PLFURSURFHVVRU� SRZHU� DQG� WKH
VRIWZDUH�GHYHORSPHQW�HQYLURQPHQW��+RZHYHU��DQ�REMHFW�RULHQWHG�DSSURDFK�WR�GRPDLQ
DQDO\VLV�ZDV�XVHG��7KH�SURMHFW
V�JRDOV�LQFOXGH�WDUJHWV�WR�VWULFWO\�OLPLW�DQ\�LQFUHDVH�LQ
HLWKHU�FRGH�VL]H�RU�HIILFLHQF\� LQ� WKH� UHXVDEOH�FRPSRQHQWV�SURGXFHG��7KLV� LV�EHFDXVH
FRQVLGHUDEOH�FRVW�VDYLQJV�FDQ�EH�UHDOL]HG�ZKHQ�DV� OLWWOH�PHPRU\�DV�SRVVLEOH�LV�XVHG�
DQG�EHFDXVH� WKHVH�SURGXFWV�PXVW�DFKLHYH�KLJKO\�RSWLPL]HG�UHDO�WLPH�SHUIRUPDQFH� WR
EH�VXFFHVVIXO�

$Q�22�DSSURDFK�WR�GRPDLQ�HQJLQHHULQJ�WXUQHG�RXW�WR�EH�YHU\�XVHIXO�GHVSLWH�WKH
IDFW�WKDW�DQ�22�LPSOHPHQWDWLRQ�ZRXOG�QRW�EH�FDUULHG�RXW��3DUW�RI�WKLV�VXFFHVV�PLJKW
EH�GXH�WR�RXU�GHILQLWLRQ�RI�D�FRPSRQHQW�DV�D�ODUJH�JUDLQ�V\VWHP�EXLOGLQJ�EORFN�ZKLFK
HPERGLHV� D� XQLTXH� VXEVHW� RI� V\VWHP� IHDWXUHV� DQG� EHKDYLRUV�� �,W� LV� ODUJHU� WKDQ
IXQFWLRQDO�SURFHGXUHV�RU�REMHFW�FODVVHV���7KLV�GHILQLWLRQ��DGDSWHG�IURP�>�@��FRQVLGHUV
D�FRPSRQHQW�DV�D�XQLW�RI�FRQILJXUDWLRQ�DQG�GHSOR\PHQW�LQ�WKH�VHQVH�WKDW�D�FRPSRQHQW
VKRXOG�EH�LQGHSHQGHQWO\�FRQILJXUHG��SDFNDJHG��DQG�GLVWULEXWHG�IRU�UHXVH�ZLWKRXW� WKH
FRQVLGHUDWLRQ� RI� RWKHU� FRPSRQHQWV��$� VXEV\VWHP� LV� D� FRPSRQHQW�ZKLFK� FRQVLVWV� RI
RWKHU�FRPSRQHQWV��

$Q� 22� LPSOHPHQWDWLRQ� ZRXOG� KDYH� PDQ\� DGYDQWDJHV�� RQH� EHLQJ� D� FKRLFH� RI
VHYHUDO�DSSURDFKHV�IRU�VXSSRUWLQJ�WDLORUDELOLW\��,Q�WKHLU�SDSHU�³'HVLJQ�*XLGHOLQHV�IRU
µ7DLORUDEOH¶�)UDPHZRUNV´� >�@��'HPH\HU�HW�� DO��GHVFULEH�DQ�DSSURDFK� WR� WKLV�SUREOHP
LQ� WKH� GRPDLQ� RI� VR�FDOOHG� ³RSHQ� V\VWHPV´�� ZKLFK� KDYH� LPSRUWDQW� UHTXLUHPHQWV� LQ
WKUHH� DUHDV�� LQWHURSHUDELOLW\�� GLVWULEXWLRQ�� DQG� H[WHQVLELOLW\�� 7KHLU� VROXWLRQ� IRU
VXSSRUWLQJ� WDLORUDELOLW\� EHJLQV� ZLWK� WKH� UHFRJQLWLRQ� RI� D[HV� RI� YDULDELOLW\� LQ� WKH
UHTXLUHPHQWV� RI� D� WDUJHW� V\VWHP�� IROORZHG� E\� WKH� GHYHORSPHQW� RI� SDUWLFXODU� REMHFW�
RULHQWHG� GHVLJQ� FRPSRQHQWV� WKDW� DGGUHVV� HDFK� D[LV� RI� YDULDELOLW\�� 2XU� SURMHFW
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GHPRQVWUDWHV� WKDW� WKH� FRQFHSW� RI� D[HV� RI� YDULDELOLW\� LV� FRQVLVWHQW� ZLWK� D� GRPDLQ
DQDO\VLV� DSSURDFK� LQ� XQGHUVWDQGLQJ� KRZ� D� IUDPHZRUN�PXVW� EH�PDGH� WDLORUDEOH�� EXW
RXU� QRQ�22� LPSOHPHQWDWLRQ� IRU� HPEHGGHG� V\VWHPV� UHTXLUHV� GLIIHUHQW� VROXWLRQV� WR
FUHDWH�D�GHVLJQ�WKDW�LV�UHDGLO\�DGDSWDEOH�

�� 'RPDLQ�$QDO\VLV

7KH� VXFFHVV� RI� D� GRPDLQ�HQJLQHHULQJ� DSSURDFK� GHSHQGV� RQ� LGHQWLI\LQJ� WKH
FRPSRQHQWV� UHTXLUHG� IRU� IXWXUH� SURGXFW� IDPLO\� DSSOLFDWLRQV�� 7KLV� LGHQWLILFDWLRQ� KDV
EHHQ� DFKLHYHG� E\� DQDO\]LQJ� DQG� FODVVLI\LQJ� WKH� NH\� FRPPRQ� IHDWXUHV� DQG� WKHLU
YDULDWLRQV� DFURVV� FXUUHQW� DQG� IXWXUH� 0RWRUROD� SURGXFWV� LQ� WKLV� GRPDLQ� DV� ZHOO� DV
FRPSHWLWRU�SURGXFWV��7KLV�SURFHVV��DGDSWHG�IURP�>�@��LV�LOOXVWUDWHG�LQ�)LJXUH���

)LJXUH�����'RPDLQ�$QDO\VLV�3URFHVV
7KH� 207� �2EMHFW�0RGHOLQJ� 7HFKQLTXH� >�@�� QRWDWLRQ� ZDV� XVHG� WR� GHVFULEH� WKH

GRPDLQ� PRGHO�� 2EMHFW� PRGHOV� ZHUH� GHYHORSHG� IURP� H[LVWLQJ� GRFXPHQWDWLRQ� RI
SURGXFW�UHTXLUHPHQWV�DQG�UHYLHZHG�E\�GRPDLQ�H[SHUWV��$QDO\VLV� OHG�WR�GHYHORSPHQW
RI�VXEV\VWHP�YLHZV�RI�WKH�REMHFW�PRGHOV��EDVHG�RQ�UHTXLUHPHQWV�RULHQWHG�DJJUHJDWLRQ
RI�IXQFWLRQDOLW\��6FHQDULRV�SOD\HG�D�FUXFLDO�UROH�LQ�YDOLGDWLQJ�WKHVH�PRGHOV��WKH\�ZHUH
FUHDWHG� DQG� DQDO\]HG� IRU� D� QXPEHU� RI� H[LVWLQJ� SURGXFWV� DQG� XVHG� WR� GHVFULEH
LQWHUDFWLRQV�EHWZHHQ�WKH�H[WHUQDO�DFWRUV�DQG�WKH�GHYLFHV�

6HFWLRQ� �� DGGUHVVHV� LQ� GHWDLOV� WKH� FRPPRQDOLW\� DQG� YDULDELOLW\� DQDO\VLV� ZKLOH
6HFWLRQ���GHVFULEH�WKH�VWUDWHJLHV�XVHG�WR�VXSSRUW�WKH�YDULDELOLW\�

��'RPDLQ�6FRSH
6FRSLQJ

,QIRUPDWLRQ�JDWKHULQJ

$FWLYLW\�	�'HOLYHUDEOHV

��3URGXFW�KLVWRU\
��5HTXLUHPHQWV�LQYHQWRU\
��'RPDLQ�GLFWLRQDU\

��'RPDLQ�0RGHO
,GHQWLILFDWLRQ�&ODVVLILFDWLRQ�RI�IHDWXUHV

&RPPRQDOLW\�	�9DULDELOLW\�$QDO\VLV
��&RPPRQDOLW\�PRGHO

��5HYLVHG�GRPDLQ�PRGHO
&RPSHWLWLYH�$QDO\VLV

9DOLGDWLRQ�DQG�(YDOXDWLRQ
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�� &RPPRQDOLW\�	�9DULDELOLW\�$QDO\VLV

'HPH\HU�HW��DO��>�@�VXJJHVW�LQ�WKHLU�DSSURDFK�WKH�UHFRJQLWLRQ�RI�D[HV�RI�YDULDELOLW\�LQ
WKH�UHTXLUHPHQWV�RI�D�WDUJHW�V\VWHP��9DULDELOLW\�LQ�WKH�GRPDLQ�ZH�DQDO\]HG�DSSHDUV�WR
IRFXV�DORQJ�WKUHH�FDWHJRULHV�RU�D[HV��DV�UHSUHVHQWHG�LQ�ILJXUH���

� IHDWXUH�YDULDELOLW\��L�H���YDULDWLRQ�LQ�WKH�GHILQLWLRQ�DQG�LPSOHPHQWDWLRQ�RI�D�VSHFLILF
IHDWXUH�� RU� DGGLWLRQDO� IHDWXUHV� SURYLGHG� IRU�KLJKHU�WLHU� SURGXFW� �H�J��� YDULDWLRQ� LQ
FKHFNLQJ�WKH�GXSOLFDWLRQ�RI�PHVVDJHV��RU�SURYLGLQJ�D�FKRLFH�RI�SOHDVLQJ�DOHUWV�LQ
DGGLWLRQ�WR�D�VWDQGDUG�DOHUW��

� KDUGZDUH�SODWIRUP�YDULDELOLW\�� L�H���YDULDWLRQ� LQ� WKH� W\SH�RI�PLFURFRQWUROOHU� ���ELW
YV�����ELW��&,6&�YV��5,6&���PHPRU\��LQWHUQDO�5$0��H[WHUQDO�5$0��)/$6+���DQG
GHYLFHV� �H�J��� VHJPHQWHG�� GRW�PDWUL[� DQG� ELWPDS� GLVSOD\V� RI� GLIIHUHQW� VL]H�� WKDW
QHHG�WR�EH�VXSSRUWHG�

� SHUIRUPDQFHV� DQG� DWWULEXWHV� YDULDELOLW\�� L�H��� YDULDWLRQ� LQ� WKH� UHTXLUHG
SHUIRUPDQFHV� �H�J��� QXPEHU� RI� EDFN�WR�EDFN� PHVVDJHV� WR� EH� UHFHLYHG�� DQG
DWWULEXWHV��H�J���IDLOXUH�KDQGOLQJ��FRQFXUUHQF\�VXSSRUW��

)LJXUH�����$[HV�RI�9DULDELOLW\

��� )HDWXUH�9DULDELOLW\

7R� DQDO\]H� DQG� GHVFULEH� FRPPRQDOLWLHV� DQG� YDULDWLRQV� LQ� WKH� IHDWXUH� VHW�� ZH
LQWURGXFHG�YDULDWLRQV�WR�WKH�207�PRGHOLQJ�QRWDWLRQV��7KLV�DOORZHG�XV�WR�DQQRWDWH�WKH
REMHFW�PRGHO�WR�UHSUHVHQW�FRPPRQDOLWLHV�DQG�YDULDWLRQV�LQ�FODVVHV�DQG�UHODWLRQVKLSV�DV
ZHOO�DV�RSHUDWLRQV�DQG�DWWULEXWHV��6RPH�RI�WKHVH�YDULDWLRQV�ZHUH�VLPSO\�³W\SRJUDSKLF´
LQ�QDWXUH�� IRU�H[DPSOH��DV� LOOXVWUDWHG� LQ�ILJXUH����D�FRPPRQ�DWWULEXWH�RU�RSHUDWLRQ� LV
VKRZQ� LQ� EROG� LWDOLFV��7KLV� W\SH� RI� QRWDWLRQ� LV� YHU\� VLPLODU� WR� WKH� RQH� GHVFULEHG� E\
'DYLV� >�@�� ,Q� DGGLWLRQ�� KLJKHU�WLHU� SURGXFWV� LQ� WKH� GRPDLQ� ZLWK� DGGLWLRQDO
IXQFWLRQDOLW\� ZHUH� PRGHOHG� E\� DGGLQJ� RSWLRQDO� FODVVHV� WKDW� HQFDSVXODWHG� WKHVH
DGGLWLRQDO�IHDWXUHV��

)HDWXUHV

+DUGZDUH

3HUIRUPDQFHV

3ODWIRUP

	�$WWULEXWHV
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)LJXUH�����1RWDWLRQ�IRU�FRPPRQDOLWLHV�DQG�YDULDWLRQV
)LQDOO\��WR�FUHDWH�WKH�FRPPRQDOLW\�PRGHO�ZH�H[DPLQHG�D�QXPEHU�RI�H[LVWLQJ�DQG

IXWXUH� SURGXFWV�� WKLV� XVXDOO\� OHG� WR� LGHQWLI\LQJ� D� VPDOO� VHW� RI� FKDQJHV� WR� RXU� HDUO\
PRGHOV� WKDW�ZHUH� UHTXLUHG�E\� WKDW�SURGXFW
V�YDULDWLRQ� LQ� UHTXLUHPHQWV�� ,Q� WKLV� VHQVH�
WKH�FRPPRQDOLW\�DQG�YDULDELOLW\�DQDO\VLV�OHDGV�WR�DQ�DGGLWLRQDO�GLPHQVLRQ�RI�RXU�YLHZ
RI�WKH�GRPDLQ�PRGHOV��)LJXUH����

)LJXUH�����9LHZV�RI�GRPDLQ�PRGHOV
$QDO\]LQJ� IHDWXUH� FRPPRQDOLWLHV� DQG� YDULDWLRQV� OHG� WR� LPSRUWDQW� FRQFOXVLRQV

UHJDUGLQJ�ERWK�KRZ�ZH�XQGHUVWRRG�UHTXLUHPHQWV�IRU�SURGXFWV�LQ�WKLV�GRPDLQ�DQG�KRZ
ZH�PRYHG�LQWR�WKH�GHVLJQ�RI�UHXVDEOH�VRIWZDUH�FRPSRQHQWV��

:H� OHDUQHG� WKDW� SURGXFW� UHTXLUHPHQWV� LQ� WKLV� GRPDLQ� DUH� EHWWHU� FODVVLILHG
DFFRUGLQJ� WR� WKH� W\SH� RI� VHUYLFH� SURYLGHG� UDWKHU� WKDQ� WKH� ³WUDGLWLRQDO´� PDUNHW
VHJPHQWDWLRQ� WKDW� KDG� EHHQ� GHILQHG� DQG� XVHG� E\� PDUNHWLQJ�� DQG� IROORZHG� E\
HQJLQHHULQJ� JURXSV�� 6XFK� VHUYLFHV� UDQJHG� IURP� EDVLF� RU� IXQGDPHQWDO� VHUYLFHV
FRPPRQ�WR�DOO�SURGXFWV�LQ�WKH�GRPDLQ�WR�DGYDQFHG�RU�KLJK�HQG�VHUYLFHV�SURYLGHG�E\
IHZHU�SURGXFWV��)LJXUH� �� VKRZV�RXU� YLHZ�RI� RQH� VXEV\VWHP� LQ� WHUPV�RI� WKH� UHODWLYH
QXPEHU�RI�EDVLF�IHDWXUHV�FRPSDUHG�WR�IHDWXUHV�WKDW�YDU\��

0HVVDJH

0HVVDJH

%R[

6WRUH�1HZ�0VJ��

'HOHWH0VJ

FRQWDLQV

��

0D[�0HVVDJHV

���

���

3HUVRQDO�

0RYH�0VJ

/RFN�0VJ

0HVVDJH�$UHD

'HOHWH$OO0VJV

0DLO'URS�

2EMHFW

0RGHO

6XE

6WDWH

6FHQDULRV

�

6\VWHP

9LHZ

0DFKLQHV

9
D
U
LD
E
LOLW\
�9
LH
Z

&RPPRQDOLW\�	
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)LJXUH�����&RPPRQ�DQG�9DULDQW�)HDWXUHV�LQ�D�6XEV\VWHP

�� 'HULYLQJ�DQ�$UFKLWHFWXUH�IRU�9DULDELOLW\

��� 3URGXFW�)DPLO\�$UFKLWHFWXUH
7KH�JRDO�RI�WKH�SURMHFW�ZDV�WR�GHILQH�DQ�DUFKLWHFWXUH�IRU�D�IDPLO\�RI�SURGXFWV��L�H��

D� KLJK�OHYHO� SDUWLWLRQLQJ� RI� VRIWZDUH� LQWR� FRPSRQHQWV�� WKH� VSHFLILFDWLRQ� RI� WKRVH
FRPSRQHQWV� DQG� WKHLU� LQWHUDFWLRQV�� DQG� D� VHW� RI� JXLGHOLQHV� H[SODLQLQJ� KRZ� WKHVH
FRPSRQHQWV�FDQ�EH�DSSOLHG�WR�DSSOLFDWLRQV�ZLWKLQ�WKH�GRPDLQ��

5HXVLQJ� .UXFKWHQ¶V� GHILQLWLRQ� RI� DUFKLWHFWXUH� >�@�� RXU� DUFKLWHFWXUH� LV� GHVFULEHG
XVLQJ�IRXU�GLIIHUHQW�YLHZV��

� WKH�2EMHFW�9LHZ� SURYLGHV� WKH� ORJLFDO� YLHZ� RI� WKH� DUFKLWHFWXUH� GHVFULELQJ� REMHFWV
DQG�WKHLU�UHODWLRQVKLSV�

� WKH� /D\HUHG� 9LHZ� GHVFULEHV� KRZ� FRPSRQHQWV� DUH� RUJDQL]HG� LQ� D� KLHUDUFK\� RI
OD\HUV��HDFK�RQH�SURYLGLQJ�D�ZHOO�GHILQHG�LQWHUIDFH�WR�WKH�OD\HUV�DERYH�LW�

� WKH� 7DVN� 9LHZ� DQDO\]HV� DQG� GHVFULEHV� WKH� FRQFXUUHQF\� DQG� V\QFKURQL]DWLRQ
DVSHFWV�RI�WKH�DUFKLWHFWXUH�

� WKH� 6FHQDULRV� GHVFULEH� LQWHUDFWLRQV� EHWZHHQ� H[WHUQDO� DFWRUV� �H�J��� WKH� HQG� XVHU�
DQG�WKH�V\VWHP�FRPSRQHQWV��
$V� VKRZQ� LQ� )LJXUH� ��� WKH� GHYHORSPHQW� RI� WKH� DUFKLWHFWXUH� ZDV� FDUULHG� RXW� E\

XVLQJ�DQG�VRPHWLPHV�HYROYLQJ�WKH�GHVFULSWLRQV�SURYLGHG�E\�WKH�GRPDLQ�PRGHO��PRUH
VSHFLILFDOO\� WKH� IHDWXUH� YDULDELOLW\��ZKLOH� WDNLQJ� LQWR� DFFRXQW� WKH� KDUGZDUH� SODWIRUP
YDULDELOLW\� DQG� WKH� SHUIRUPDQFH� DQG� DWWULEXWH� YDULDELOLW\�� 0RUH� GHWDLOV� RQ� WKLV
WUDQVLWLRQ�DUH�SURYLGHG�LQ�>�@�

0HVVDJH

�

&RPPRQ�)HDWXUHV�

9DULDQW�)HDWXUHV�

0HVVDJH�6WRUDJH
DQG�5HWULHYDO

0DNH5RRP

'XSOLFDWLRQ

0DQDJHU
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)LJXUH�����)URP�'RPDLQ�0RGHO�WR�$UFKLWHFWXUH

��� 'HVLJQ�6WUDWHJ\�IRU�)HDWXUH�9DULDELOLW\�

7KH� GHVLJQ� VWUDWHJ\� WKDW� ZDV� XVHG� WR� VXSSRUW� IHDWXUH� YDULDELOLW\� LV� EDVHG� RQ� WKH
FRQFHSW�RI�D� IUDPHZRUN��)LJXUH���EHORZ�VKRZV�KRZ��XVLQJ�ZKDW�ZDV� OHDUQHG� LQ� WKH
GRPDLQ�DQDO\VLV��D�FRPSRQHQW�LV�RUJDQL]HG��7KH�VHW�RI�FRPPRQ�IHDWXUHV�DUH�IHDWXUHV
WKDW�DUH�SURYLGHG�E\�DOO�SURGXFWV�XVLQJ� WKH�FRPSRQHQW��&XVWRP�IHDWXUHV�DUH�IHDWXUHV
WKDW�ZLOO� UHTXLUH� WR� EH� FKDQJHG� WR� UHVSRQG� WR� H[LVWLQJ� DQG� IXWXUH� YDULDWLRQV��$W� WKH
DSSOLFDWLRQ� OD\HU�� WKHVH� YDULDWLRQV� DUH� GLUHFWO\� UHODWHG� WR� XVHU� IHDWXUH� YDULDWLRQV
LGHQWLILHG�GXULQJ�WKH�GRPDLQ�DQDO\VLV��

)LJXUH�����&RPSRQHQW�RUJDQL]DWLRQ
$W�WKH�KDUGZDUH�DEVWUDFWLRQ�OD\HU��VHH��������WKHVH�YDULDWLRQV�DUH�PRVWO\�UHODWHG�WR

WKH�UDQJH�RI�KDUGZDUH�FRQILJXUDWLRQV�WKDW�QHHG�WR�EH�VXSSRUWHG�
(DFK� FRPSRQHQW� SURYLGHV� D� FRQVLVWHQW� FOLHQW� $3,� QRWZLWKVWDQGLQJ� WKH� PXOWLSOH

YDULDWLRQV�WKDW�FDQ�EH�GHULYHG��DQG�D�SUHGHILQHG�VHW�RI�KRRNV�IRU�FXVWRPL]DWLRQ��7KLV
VHW� RI� KRRNV� GHILQHV� D� FXVWRPL]DWLRQ� $3,� WKDW� UHODWHV� GLUHFWO\� WR� WKH� SRLQWV� RI
YDULDWLRQV�UHSUHVHQWHG�LQ�)LJXUH���

$OWKRXJK�QRW�LPSOHPHQWHG�XVLQJ�DQ�REMHFW�RULHQWHG�ODQJXDJH��WKH�RUJDQL]DWLRQ�RI
WKHVH� FRPSRQHQWV� LV� LQGHHG� VLPLODU� WR� WKH� FRQFHSW� RI� IUDPHZRUN� DV� GHILQHG� E\
7DOLJHQW>�@�DQG�/HZLV�>�@��

$UFKLWHFWXUH

2EMHFW�0RGHO

�

&RPPRQDOLW\

'RPDLQ�0RGHO

6XE6\VWHP�9LHZ
6WDWH�0DFKLQHV
6FHQDULRV

2EMHFW�9LHZ

�

&RPPRQDOLW\

/D\HUHG�9LHZ
7DVN�9LHZ
6FHQDULRV

	
�9
DULDE

LOLW\

	
�9
DULDE

LOLW\

&OLHQW�$3,

&XVWRP
&RGH

6HUYLFHV�3URYLGHG

&XVWRP
IHDWXUHV

&RPPRQ
IHDWXUHV

&RQILJXUDWLRQ

&XVWRPL]DWLRQ
KRRNV
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7KH� JXLGHOLQHV� SURSRVHG� E\� 'HPH\HU� HW�� DOO� >�@� IRU� ³WDLORUDEOH´� IUDPHZRUNV
UHFRPPHQG� H[WHQGLQJ� WKH� RULJLQDO� GHVLJQ� ZLWK� ³D[LV� REMHFWV´�� REMHFWV� GHGLFDWHG� WR
HQFDSVXODWH� YDULDWLRQV� RQ� HDFK� D[LV�� ,I� WKLV� VWUDWHJ\� DSSHDUV� PRUH� V\VWHPDWLF� DQG
PRUH� IOH[LEOH�� LW� GRHV� QRW� VHHP� ZHOO� VXLWHG� IRU� UHVRXUFH�FRQVWUDLQHG� HPEHGGHG
V\VWHPV�VXFK�DV�SDJHUV�

��� 'HVLJQ�6WUDWHJ\�IRU�+DUGZDUH�9DULDELOLW\

7KH� SULPDU\� VWUDWHJ\� XVHG� IRU� VXSSRUWLQJ� KDUGZDUH� YDULDELOLW\� LV� WKH� GHILQLWLRQ� RI� D
OD\HUHG�DUFKLWHFWXUH�ZLWK�DQ�KDUGZDUH�DEVWUDFWLRQ�OD\HU��7KLV�DUFKLWHFWXUH��UHSUHVHQWHG
LQ�)LJXUH����FRQVLVWV�RI�WKUHH�OD\HUV��7KH�WRS�OD\HU�LV�WKH�DSSOLFDWLRQ�OD\HU��WKH�PLGGOH
OD\HU� LV� WKH� VHUYLFHV� OD\HU�� DQG� WKH�ERWWRP� OD\HU�� WKH�KDUGZDUH� DEVWUDFWLRQ� OD\HU��%\
HQFDSVXODWLQJ� KDUGZDUH� GHYLFH� GHSHQGHQFLHV� DQG� LPSOHPHQWLQJ� GHYLFH� VSHFLILF
GULYHUV�� WKLV� OD\HU� VKLHOGV� WKH� RWKHU� OD\HUV� IURP�PRVW� RI� WKH� YDULDWLRQV� LQ� KDUGZDUH
SODWIRUPV��

)LJXUH�����$UFKLWHFWXUH�/D\HUHG�YLHZ

��� 'HVLJQ�6WUDWHJ\�IRU�3HUIRUPDQFH�DQG�$WWULEXWH�9DULDELOLW\

7KH�ORZ�HQG��YHU\�VPDOO�IRRWSULQW�WDUJHW�SURGXFWV�DSSHDU�WR�UHSUHVHQW�RQH�RI�WKH�PRVW
FKDOOHQJLQJ�FRQVWUDLQWV� IRU� WKH� DUFKLWHFWXUH��7R�VXSSRUW� WKHVH�FRQVWUDLQWV�� D� WUDGH�RII
KDG� WR� EHHQ� PDGH� EHWZHHQ� WKH� UDQJH� RI� WKH� IHDWXUHV� SURYLGHG� E\� VRPH� FULWLFDO
FRPSRQHQWV� DQG� WKHLU� SHUIRUPDQFHV�� $V� DQ� H[DPSOH�� D� KLJKO\� HIILFLHQW
LPSOHPHQWDWLRQ� RI� WKH� PHVVDJH� PDQDJHU� KDV� EHHQ� SURGXFHG� E\� FRQVWUDLQLQJ� DW
FRPSLODWLRQ� WLPH� WKH� QXPEHU� RI� IROGHUV� DQG� WKH� QXPEHU� RI� PHVVDJHV� ZLWKLQ� HDFK
IROGHU�

�� &RQFOXVLRQ

'HYHORSLQJ� D� SURGXFW� IDPLO\� DUFKLWHFWXUH� UHTXLUHV� QRW� RQO\� LGHQWLI\LQJ� WKH
FRPPRQDOLWLHV� DFURVV� WKH� GRPDLQ�� EXW� DOVR� XQGHUVWDQGLQJ� WKH� YDULDELOLW\�� 7KH
FRPPRQDOLW\�DQDO\VLV�SURYLGHV� WKH�FDSDELOLW\� WR�GHWHUPLQH� WKH�FRUH�FRPSRQHQWV�DQG
WKHLU�FRPPRQ� IHDWXUHV��7KH�YDULDELOLW\�DQDO\VLV�FDSWXUHV� WKH�PHDVXUH�RI� WDLORUDELOLW\

0HVVDJH

6HUYLFHV�

0DQDJHU

)LOH

0DQDJHU

$SSOLFDWLRQ�
/D\HU

/D\HU

+DUGZDUH�$EVWUDFWLRQ�/D\HU

+DUGZDUH+&��+&��

)LOH
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UHTXLUHG�IURP�WKH�DUFKLWHFWXUH��$V�VXFK� WKH�D[HV�RI�YDULDELOLW\� LGHQWLI\� WKH�SURMHFWHG
VWUHVV�SRLQWV�RI�D�GRPDLQ�DUFKLWHFWXUH�

7R� VXSSRUW� WKRVH� GHJUHHV� RI� YDULDELOLW\�� VSHFLILF� GHVLJQ� VWUDWHJLHV� QHHG� WR� EH
GHYHORSHG�� DV� WKH�JXLGHOLQHV�SURSRVHG�E\�'HPH\HU� HW�� DO� >�@� LQ� WKH� FRQWH[W�RI�RSHQ
V\VWHPV�� ,Q� WKH�ZLUHOHVV� HPEHGGHG�GRPDLQ� WDUJHWHG�E\�)/(;70�.HUQHO� WKH� D[HV�RI
YDULDELOLW\�IRXQG�DQG�VRPH�RI�WKH�VWUDWHJLHV�VHOHFWHG�GLIIHU�IURP�'HPH\HU��+RZHYHU�
ZH� XVHG� D� VLPLODU� RYHUDOO� DSSURDFK� WKDW� KDV� VKRZQ� WR� EH� EHQHILFLDO�� DQDO\]H� WKH
GRPDLQ�WR�LGHQWLI\�WKH�YDULDELOLW\�D[HV��DQG�GHILQH�VSHFLILF�GHVLJQ�VROXWLRQV�WR�VXSSRUW
HDFK�D[LV�

5HIHUHQFHV

>�@ -��0HHNHO��7��+RUWRQ��&��0HOORQH��6��'DOYL��5��)UDQFH��³)URP�'RPDLQ�$UFKLWHFWXUH
WR�$UFKLWHFWXUH�)UDPHZRUNV´��$&0�6\PSRVLXP�RQ�6RIWZDUH�5HXVDELOLW\��%RVWRQ�
0D\������

>�@ 6�� 'HPH\HU�� 7�� 0HLMOHU�� 2�� 1LHUVWUDV]�� 3�� 6WH\DHUW�� ³'HVLJQ� *XLGHOLQHV� IRU
7DLORUDEOH�)UDPHZRUNV´��&RPP��$&0���2FWREHU�������SS�������

>�@ :�� .R]DF]\QVNL�� -�� 1LQJ�� ³&RPSRQHQW�%DVHG� 6RIWZDUH� (QJLQHHULQJ´�� 3DQHO
,QWURGXFWLRQ�� ,(((� )RXUWK� ,QWHUQDWLRQDO� &RQIHUHQFH� RQ� 6RIWZDUH� 5HXVH�� $SULO
�����

>�@ *�� $UDQJR�� ³'RPDLQ� DQDO\VLV� PHWKRGV´� LQ� 6RIWZDUH� 5HXVDELOLW\� HGLWHG� E\�:�
6KDIHU��5��3ULHWR�'LD]�DQG�0��0DWVXPRWR��(OOLV�+RUZRRG�/WG���������&KDSWHU���

>�@ -��5XPEDXJK�	�DOO��2EMHFW�2ULHQWHG�0RGHOLQJ�DQG�'HVLJQ��3UHQWLFH�+DOO�������

>�@ 0�� 'DYLV�� ³$GDSWDEOH�� 5HXVDEOH� &RGH´�� $&0� 6\PSRVLXP� RQ� 6RIWZDUH
5HXVDELOLW\��6HDWWOH��$SULO������

>�@ 3��.UXFKWHQ��³7KH�����9LHZ�0RGHO�RI�$UFKLWHFWXUH´��,(((�6RIWZDUH��1RY������

>�@ 7DOLJHQW�� ³%XLOGLQJ� 2EMHFW�2ULHQWHG� )UDPHZRUNV´��:KLWH� 3DSHU�� 7DOLJHQW� ,QF��
�����

>�@ 7��/HZLV��2EMHFW�2ULHQWHG�$SSOLFDWLRQ�)UDPHZRUNV�0DQQLQJ�3XEOLFDWLRQV�������
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Commonality Analysis: A Systematic Process for
Defining Families
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Lucent Technologies Bell Laboratories, 1000 E.Warrenville Rd.
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Abstract. The success of family-oriented software development
processes depends on how well software engineers can predict the
family members that will be needed. Commonality analysis is an
analytical technique for deciding what the members of a family
should be. It is in use at Lucent Technologies as part of a domain
engineering process known as family-oriented abstraction,
specification, and translation (FAST). Lucent software developers
have performed commonality analyses on more than 20 families;
results have been sufficiently encouraging that the analysis process
is rapidly undergoing institutionalization.

1. Introduction

The success of family-oriented software development processes depends on how
well software engineers can predict the family members that will be needed. This
problem is hard because the idea of a family, although well-known, is not well
formalized, there are no rules that enable engineers to identify families easily,
prediction of expected variations in family members is difficult, and there is
usually no time allocated in the development process for conducting an analysis of
the family. Nonetheless, the payoff for doing so can be quite high; its result is of
critical importance to the product family architects and potentially reduces
drastically the time and effort needed for design and for production of family
members.

This paper describes an analytical technique, known as commonality analysis,
for deciding what the members of a family should be. This technique is in use at
Lucent Technologies as part of a domain engineering process known as family-
oriented abstraction, specification, and translation (FAST). In this paper we will
use the terms domain and family synonymously. The goal of the FAST process is
to develop facilities for rapidly generating members of a family; it is a variation
on the Synthesis process described in [2].   Performing a commonality analysis is
an early step in the FAST process.
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1.1 Developing Families

Techniques for building families were documented in the software engineering
literature starting in the 1970s (see, e.g., ([1], [4], [5], [6], [7], [8]). These
techniques often centered on constructing an architecture that would
accommodate expected changes in the software, but most said little about how to
decide what the members of a family should be.

1

 When the expected changes are
just those that correspond to predictions about what family members one will
need, we will call such an architecture a family architecture.

Regardless of how one plans to create and maintain a family architecture, one
must have confidence that there is a family worth building.  Performing a
commonality analysis is a systematic way of gaining such confidence and of
deciding what the scope of the family is, i.e., what the potential family members
are. It reduces the risk of building systems that are inappropriate for the market
and provides guidance to architects of the systems, helping them to create a
design that reduces the cost and time to create new family members.

1.2 An Example: The Host At Sea Buoy Family

To illustrate the ideas presented here, this paper uses as an example the Host At
Sea (HAS) Buoy family. The HAS Buoy example was invented to typify the
problems encountered by designers of real-time systems and first appeared in
[10]. Briefly, HAS Buoys float at sea and collect data about their environment and
broadcast the data at regular intervals. The HAS buoys form a family, since they
have common requirements concerning their functionality, but they may be
configured with different sensors in different numbers, with different radio and
navigational gear, with different computer systems of different capabilities, and
with a variety of other equipment.

2. Defining Families

The work cited previously on design of families suggests that the key issues in
family design are identifying and making useful the abstractions that are common
to all family members, and structuring the design to accommodate changes. Input
to the architect(s) for the family should then consist of either the abstractions
themselves or the information needed to identify them, and also the expected
changes. Commonality analysis is based in part on the idea that there are two
primary sources of abstractions:

• the terminology used to describe the family, and
• assumptions that are true for all family members.
To identify the scope of the family the analysis must also include predictions of

how family members will vary. Every commonality analysis used in the FAST
process focuses on these three elements: terminology, commonalities, and

                                                          
1

 For example, one technique focused on constructing a set of information hiding modules,
each independently adaptable to independently occurring changes ([7]).
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variabilities. Hereafter, for convenience, commonality analysis will refer both to
the artifact produced by the analysis and the process of performing the analysis.

2.1 Terminology

Most software development methodologies now suggest that developers equip
themselves with a dictionary of standard terms. These terms serve to make
communications among developers easier and more precise and are often a
fruitful source of abstractions. For just these reasons a dictionary of terms is a part
of a commonality analysis document.

2.2 Commonalities

Identifying common aspects of the family is a central, and the eponymous, part of
the analysis.  Accordingly, a commonality analysis contains a list of assumptions
that are true for all family members.  Such assumptions are called commonalities.
Commonalities are requirements that hold for all family members and are another
fruitful source of abstractions.  As an example, the HAS family of buoys is likely
to have as a commonality the assumption that all members of the family must
monitor air temperature, wind speed, and precipitation.

2.3 Variabilities

Whereas commonalities define what’s always true of family members,
variabilities define how family members may vary.  Variabilities define the scope
of the family by predicting what decisions about family members are likely to
change over the lifetime of the family.  A commonality analysis contains a list of
variabilities and the range of values for each variability. These ranges of values
act as parameterizations of the variabilities, and are known as parameters of
variation.

Fixing a value for a parameter of variation specifies a subset of the family. As
an example, variabilities for the HAS family may include the required precisions
of measurement of the monitored environmental conditions.  The parameters of
variation corresponding to these variabilities specify the ranges of values for the
precision. The range for the parameter of variation for precision of temperature
measurement might be .1 to 10 degrees.  Fixing a value for this parameter, such as
1 degree, then specifies a subfamily all of whose members require that precision.
Note that in this example the parameter of variation has a numerical value, but in
many instances the set of values will be non-numeric, and could include such
possibilities as choices among algorithms, choices of functions to be used in a
computation, or  choices among an enumerated type or Boolean.

In addition to specifying the range of values for each variability, the analysis
also specifies the time at which the value is fixed, i.e., the binding time for the
decision represented by the variability.  Some typical binding times are run time,
system (family member) build time, and system (family member) specification
time.
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3. FAST Commonality Analysis

Standardizing and institutionalizing an approach such as commonality analysis
requires that we be able to describe both the artifact to be produced, i.e., the
commonality analysis document, and the process by which it is produced.

3.1 Contents of a Commonality Analysis

Table 1 shows the organization of a FAST commonality analysis document. In
addition, a list of tasks left to do to complete the analysis is often maintained as
part of the document while it is being created.

To aid in the analysis of the family and to improve the readability of the
document, commonalities (and variabilities) are organized into sublists that deal
with separate concerns. For example, a commonality analysis for the weather
buoys might have a section of commonalities (and variabilities) that deals with the
sensors that are part of the buoy, another section that deals with the reports
produced by the buoy, and others that deal with other concerns relevant to the
family. Note that such a structure is specific to the family.

During the course of any analysis technique used in systems development
issues arise that are difficult to resolve and that have a strong effect on the result.
Such issues, along with the alternatives considered for their resolution, are
included in a separate section of the document. This practice helps keep the
analysts from going in circles, and provides insight for later users into the reasons
for the decisions made by the analysts. Such insight is particularly useful for
reviewers of the analysis, for developers of a language used to specify family
members, for creators of the design for the family, and for engineers new to the
family.

An issue for buoy analysts might be whether or not buoys could be equipped
with active sensors, such as sonar, that might be used for purposes other than
weather reporting. Such a feature might widen the market for buoys, but might
impose design and operational constraints that would make it unrealistic to
include such buoys in the same family as floating weather stations.

Commonality analyses focus on requirements for the family, but often uncover
useful design and implementation information during the analysis, which is often
documented in one or more appendices so that it need not be rediscovered.

3.2 The Commonality Analysis Process

FAST commonality analyses are performed in a series of meetings of domain
experts, facilitated by a moderator. Meetings are usually held at regular intervals,
but their duration and frequency may vary widely. The analysis team produces the
document during the meetings as a group, by consensus, guided by the moderator.
One group member, the recorder, has the responsibility to record the group’s
decisions in the commonality analysis document during the meetings, using the
standard structure of a commonality analysis as shown in Table 1.

Typically, each participant, except the moderator, is expert in one or more
aspects of the family. The moderator is expert in the FAST process, can recognize
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well-formed, clear, and precise definitions, commonalities, variabilities,
parameters of variation, and useful issues, and knows how to guide the discussion
to produce them. The moderator is also frequently the recorder. As the recorder
edits the document it is continuously displayed for all participants during each
meeting. Each participant receives a copy of it, either electronically or in hard
copy, at the end of each session.

Section Purpose
1. Introduction Describes the purpose of performing the analysis

and the expected use. Typically, the purpose is to
analyze or define the requirements for a particular
family and to provide the basis for capabilities
such as
• a way of specifying family members
• a way of generating some or all of the code

and documentation for family members
• an environment for composing family

members from a set of components that are
designed for use in many family members

2. Overview  Briefly describes the family and its relationship(s)
to other families.

3. Dictionary of Terms  Provides a standard set of key technical terms used
in discussions about and descriptions of the family.

4. Commonalities  Provides a structured list of assumptions that are
true for all members of the family.

5. Variabilities  Provides a structured list of assumptions about how
family members may vary.

6. Parameters of Variation  Quantifies the variabilities, specifying the range of
values and the decision time for each.

7. Issues  Provides a record of the alternatives considered for
key issues that arose in analyzing the family.

8. Appendices Includes various information useful to reviewers,
designers, language designers, tool builders for the
family, and other potential users of the analysis.

Table 1 Organization of a Commonality Analysis Document

3.3 Stages of the Analysis

The commonality analysis process is organized into several stages, as follows.
• Prepare: The moderator ensures that all resources needed for the initial

sessions are in place.
• Plan: The moderator and domain experts meet to agree on the purpose and

scope of the analysis and to review briefly the expected activities and results
of the commonality analysis process.
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• Analyze: The moderator and domain experts meet to analyze the family and
characterize its members up to the point of producing parameters of variation,
i.e., they produce all sections of the document except section 6.

• Quantify: The moderator and domain experts meet to define the parameters
of variation for the family, section 6. of the document, and prepare the
document for review.

• Review: Reviewers external to the team that produced the analysis conduct a
review of it, possibly using techniques such as an described in [9].

 Figure 1 shows the stages of the analysis, the activities that proceed in each
stage, and the ordering among the stages, indicating concurrency and iteration
both among activities within a stage of the analysis and between stages. For
example, defining terms, identifying commonalities, and identifying variabilities
may proceed concurrently; they are all iterative with identifying and resolving
issues.

 Although the duration for completing a commonality analysis varies depending
on the mode in which the group works, the total effort is approximately the same,
i.e., about 24 staff weeks. The result of this effort is usually a document of 25-50
pages, excluding appendices.

 4. Results

 The author is personally familiar with 17 different commonality analyses that
have been tried at Lucent, and one analysis outside Lucent [3]. In addition, there
are perhaps another 10-15 cases within Lucent where the author is aware that an
analysis is in progress. Of the 17, 10 have been completed, one was never
finished, and six are in progress.

 Although some groups consider the analysis to be just an early step in their
application of the FAST process, nearly all have come to view it as a worthwhile
endeavor in itself. Their analyses have been and are being used for the following
purposes.
• Continuation of the FAST process, i.e., to design a domain specific language

and then to generate the code and documentation for family members from
specifications in the language. Teams usually estimate during the process that
they will get an improvement between 2:1 and 3:1 in productivity gains from
using this approach. Early data from development tends to validate these
estimates.

• Basis for a family architecture. Some groups create an object oriented design
for their family. Variabilities, for example, are viewed as decisions to be
encapsulated within classes or information hiding modules [8].

• As reference documentation. The analysis is viewed as a repository of critical
information about the family that has hitherto never been documented, and
that many project members have never previously known or understood.

• Basis for reengineering a family. Some projects use the analysis as a way to
start reorganizing and redesigning an existing set of code into a unified
domain.
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 Figure 1 Commonality Analysis Process
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• As a training aid. The commonality analysis is used to train new project
members.

• As a plan for evolution of the family. The commonality analysis is used as a
description of the products (and/or services) that are expected to be offered to
customers in the future.

It is difficult to offer quantitative evidence that performing a commonality
analysis alone leads directly to improvements in understanding a family, in design
and code for a family, and in other aspects of software development for a family.
Informal surveys of developers who have performed such analyses indicate that
they believe they have gotten value from the analysis. This effect may just be a
result of giving them time during their development interval to think about issues
they do not ordinarily have time to consider. The commonality analysis process
structures this time and the artifact that results from it in a way that clearly focuses
the developers on issues of changeability. Other techniques may work equally
well.

The commonality analysis process (and FAST) started as an experimental
process at Lucent in 1992 and is still evolving. It is now being institutionalized via
a set of training courses and support groups. In most cases, projects decide to try
the process because they need to find ways to satisfy the demands of a growing set
of varied customers at lower cost with shorter development intervals, i.e., they are
seeking a competitive advantage.
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Abstract. Software system has to face many changes during its life
cycle. Some of these changes can be anticipated some come as
surprises. Software systems can be designed to be flexible in terms
of anticipated changes. Flexibility is achieved by structuring the
system utilizing abstraction, indirection, late binding or some other
variance mechanism. Surprising changes are still a problem.
Partially this problem can be alleviated by proper management of
design knowledge. We propose a mechanism to organize design
decision so that this organization can be used to analyze change
requests and determine their impact on system architecture. We
demonstrate this using an industrial example.

1. Introduction

The life span of an industrial software system can be decades. During this time it
has to be adapted to changing requirements. Some of these changes can be
anticipated while others come as surprises.

There usually exists many different options on how to react to a change
request. For example if the request is a new functional feature to the system, it
might be possible to make a straight forward implementation for it and attach it to
the system or the new feature could be added by adding a parametrization to an
existing feature. The different options have different tradeoffs in terms of
required amount of work and impact on system structure or architecture.

Modifications to the software systems tend to be mainly additive. Addition
seems to be the best option in short time scale: addition of a new feature takes
less work than restructuring and retesting existing parts. Continuous addition,
however, leads to a situation where it is hard to control the impact of changes to
the system architecture and the architecture slowly degrades. The degradation of
system architecture and constant addition of new features lead to uncontrolled
growth of the system and the organization that is maintaining it.

mailto:anssi.karhinen@research.nokia.com
mailto:juha.kuusela@research.nokia.com
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The decisions on how to react to change requests are often made relying only
on local information of the single change request and other non-architectural
information like the amount of available resources and delivery schedule.
Analytical information on change requests and its relation to the system as a
whole is missing. The requests are not classified, nor are the impacts of different
options on how to react to the requests. System evolution is not taken into
account.

In order to improve the situation designers making the change need to be more
informed.  They need to know the rationale behind the structures of the design.
This rationale allows them to base their decisions on global information of the
system structure. They will be able to utilize existing flexibility in the design
when the change had been anticipated and they can understand the consequences
of different modification alternatives when the change is a surprise.

Lot of design knowledge is accumulated  over the product life cycle. An
efficient mechanism is needed to support change management based on the
accumulated design knowledge. We propose the Design Decision Trees (DDT)
[2] as a mechanism to organize and access this body of knowledge. Design
decision tree can be used to map the change requests to the existing design. This
makes it possible to classify different options and to react to them and analyze
their architectural implications.

2. Variance in Large Software Systems

Many large software systems are maintained as a group of coexisting variants,
called software product family [4]. The members of a software product family
share most of the requirements but each variant also has its own unique set of
requirements.

The main problem in maintaining a software product family is how to continue
to share effort and reuse design and implementation while providing more and
more variation of features and capabilities in the family members.

To get a more detailed picture of this problem we have to take a closer look on
how and why the family members vary.

2.1 Classification of Variance

Variance in software systems can be classified to be either predictable or
unpredictable. In predictable variance we have a domain model of variance and
the reasons for it. For example in telecommunication standards there exist an
international standard for the communication protocol between telephone
exchanges. In addition there exists a finite number of national variants of that
protocol. Now if we are designing the software for a telephone exchange we can
analyze the variance in the requirements for protocol software as complete
information for the variants is available. Predictable variance can be anticipated
[5].
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In many cases however the variance in requirements cannot be analyzed or
known in advance. For example if our software system is using third party
components the vendor of those can change the components arbitrarily without
communicating he reasons behind the changes. In such case if we need to
continue to support the old component also we must generate variants of our
system without a model for the variance.

2.2 Options for Managing Variance

There are at least four different approaches to achieving sharing and reuse in
families of software products: implementation configuration, customization,
modularization and design configuration [6].

Families of products that achieve variation by implementation configuration
have one design for all products. The design is usually simple because variance is
completely managed by implementation, and the design disregards differences
between products. Implementation configuration does not require a model of
variance for predicting future requirements. Variation is considered to be
unpredictable. In order to achieve sharing and reuse between different products,
program text manipulation through conditional compilation and source code
configuration management is used. As the number of products in the family
grows, managing variation through configuration on the implementation level
becomes very complex.

Managing family variance by customization means that all variants are
supported by one "universal" product that may be customized by the maker or by
the customer to behave as any specific variant. Hence customization enables one
to change product capabilities, supported features, and modes of operation. All
possible components must be present in the design and implementation of the
product. The active set of components is selected by customization procedures.

The remaining two approaches do not rely on a single design for all the
products in the family. They differ in the kind of variation they accommodate.

In modularization, variation is localized to structural elements of the design
and variants are produced by selecting appropriate set of components. The shared
part of the design (the family architecture) is a framework that is further extended
by selecting existing and specifying new components, and establishing
relationships between them. Both the choice of the components and their
relations may change from product to product.

Designing and developing a family architecture and generic components that
may be shared by different products in a family is a complex task. Furthermore,
such product implementations often require more runtime resources than simpler
implementations of variant products.

In design configuration [6], variability in the product is addressed on the
design level and each product in the family has a different design. The
management of different designs relies on tool support to manage dependencies
between the products in the family.
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If the variability in the application domain is ad hoc, customization and
modularization do not effectively achieve sharing and reuse. On the other hand,
implementation configuration does not use design as a tool for managing
complexity and thus leads to overly complex implementations.

3. Variance, System Structure and Design Decisions

Inherently software is very flexible. Unfortunately the larger a system gets the
more inflexible it becomes. Existing system structure constrains evolution. When
you make a change you have to

• conform to the interfaces of those modules you communicate with,
• use the data representations of those interfaces,
• use the data representation of all data stores,
• base your execution architecture on the existing operating system and its

scheduling principles,
• use only the time slot allocated to you,
• conform to the fault tolerance mechanisms,
• respond to all other housekeeping request,
• and use only accepted development process and supported programming

languages and tools.
You should be able to make the addition without breaking any undocumented

expectations other modules have about logical dependencies or timing properties
of the system.

All these restrictions are created during design. Design decisions constrain the
design more than anything else and consume the inherent flexibility of software
systems. This is not a surprise as the purpose of design decisions is to remove
uncertainty and define the system structure. However the order in which
decisions are made is very important. Early decisions should be based on non
varying aspects of the system and they should be made so that those parts that are
expected to vary can have alternative designs.

4. Design Decision Tree

A software designer faced with the task of translating the requirements into an
implementation must first of all recognize what are the essential problems that
must be addressed by the design including the needs to test and later modify the
program as requirements change. This task of identifying and understanding the
problems must precede the search for the solution.

A software design pattern combines a description of an essential problem
recurring in a particular context and an experience-proven solution to it. Patterns
serve as perceptual filters that help to understand the requirements in terms of the
designs they imply and offer a consistent set of effective solutions to these
problems. By ordering design patterns into a decision tree (DDT) they can be
incrementally specified. In such a structure changes to designs triggered by new
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requirements are considered under the constraints imposed by earlier design
decisions. To avoid replication when representing variations and alternatives
DDT structures architectural knowledge hierarchically into finegrain elements,
decisions.

A natural organization of a DDT is from the more general design decisions to
the more specific. This way a DDT allows incremental specialization of context,
requirements and constraints along with the corresponding specialization of the
design. Branching helps to explore the alternative designs and their
differentiating qualities in the context of the problem requirements and the
preceding design decisions.

At any level independent decisions may be ordered based on the tightness of
constraints they impose on the design space. Decisions that introduce fewer
constraints should be taken first as they less likely to be reversed. Known
variance can be taken into account as additional requirements. Since decisions are
tied to the system structure, design decision tree allows a close control of the
variance supported by the system structure, without making the structure overly
generic and thus expensive and inefficient.

DDT’s do not grow very large. Each DDT typically shows the reasoning
behind one essential design decision, the alternatives considered and the
consequences. It also shows what are the later decisions that were affected by this
decision. As a group DDT forest shows all the important decisions.

DDT offers a simple mechanism that supports tracing design decisions to
requirements and exploring the alternative solutions. This supports management
of unexpected variance. In a design decision tree it is often possible to point out
the first decision that should be reversed once a requirement has changed. Based
on the place of the decision in the tree it is possible to estimate cost of the
change. Most of the time earlier decisions are more expensive to reverse than
late.

5. Controlled Evolution by Using DDT

Design decision trees can be used to analyze change requests and determine
different options to deal with them. The decision trees provide a way to argue
about different tactics and to accumulate knowledge about the evolution of the
system.

A change request can be analyzed in the context of the requirement space. A
change request usually means that new requirements are set for the system or
existing requirements are modified. DDT can be used to analyze the impact of
new requirements to the requirement space and to investigate the changes
different implementation strategies cause to the system structure.

Design decision tree also to protects the system structure by communicating
design rationale. Some systems are constructed to be flexible and gracefully
evolving. However the structure of the system and the knowledge behind its
design is seldom communicated. They stay implicit and may be only recognized
by experienced software designers examining the structure of software in the
products. Long lived systems are shaped over time by many developers that do
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not share the knowledge and understanding of the problems addressed by the
design of the software. Without support system erodes.

6. An Example: A Boot Loader for Distributed System

Our example is a boot loading and initialization system for a distributed software
system. A boot loader system is a critical component in telecommunication and
networking systems and it contains many sources for variation. We cover the
design decisions mainly at general level although our example was derived from
a real system, a telephone exchange.

Different subscribers are attached to telephone exchange through subscriber
access equipment. This equipment is typically located outside the actual
exchange site. The distance from the exchange to the access device can be many
kilometers.

Subscribers have different requirements for their connections. For example
common telephone subscribers require an analog connection that can understand
either pulse based or tone based signaling for dialing. Subscriber that operates a
wide area data network might need a fast digital connection to the exchange. To
satisfy the needs of different subscribers there exist different kinds of access de-
vices. They are connected to the exchange through different lines, depending on
the type of the exchange.
The topology of the
connection network is a
star with the exchange in
the middle and the sub-
scriber access nodes at the
points of the star.

The access devices
contain software that
implements the different
services offered by them.
This software is subject to
change as new services are some times added to access nodes and  bugs in the
software must be fixed. The initialization procedure of a software package may
change when the software is updated. The updates are not necessarily made
simultaneously to all similar access nodes thus similar devices with different
initialization requirements may coexist in the system.

There can be hundreds of access devices connected to a single exchange and
the physical location of them can be hard to get to. For these reasons their
software must be managed in a centralized fashion from the exchange. The
exchange operator must be able to download new software packages to the access
nodes and initialize them.

At the startup of the network the software in the access devices must be loaded
and initialized according to certain constraints. For example the order in which

Subscriber
terminals

Access
nodes

Exchange

To other exchanges
(the trunk lines)

Figure 1: Access network of an exchange
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the devices are initialized can be important as the initialization may take
considerably long.

The boot loader system is responsible for the loading the software into access
nodes and for the initialization of them.

6.1 DDT for Boot Loader

In this chapter a DDT for a boot loader in a distributed software system is
presented. Design options for a general distributed boot loader system are
considered but the DDT covers only the decision path that leads to a boot system
that is suitable for a telephone exchange system described above.

Special attention is paid to the potential variance in the system as the ability of
a design to absorb change is largely determined by the ability of the system to
accommodate variance. In practice this means making decisions that are likely
subjects to variance as late as possible.

In situations where variance is already present in the application domain a
modular design approach to manage the variance can be used. The variance can
be localized into certain components of the system. For example the different
interfaces of access node initialization hardware may be localized in a hardware
driver module that offers similar set of abstract initialization services regardless of
the node type.

In the DDT notation each node represents a taken design decision. It is guarded
by entry criteria that is placed over the arc leading to the node. The entry criteria
is the most general constraint that the decision must fulfil in order for it to be
taken. Often the entry criteria is used to represent desired system level properties
like “fast performance” or “robust operation”.

Inside a decision node are three fields. The first field is the actual design
decision that is being made. Second field contains the constraints which must be
fulfilled by the context where the decision is considered. Third field contains the
implications of the decision.

Whenever a real design process takes place the design decisions are always
ordered. Each decision that is taken restricts the set of possible further decisions.
This means in practice that some decision that has been made early in the process
might make it impossible to later make a decision crucial to achieving some
system level criteria.

In a DDT all subsequent decisions are made in the context introduced by
earlier decisions so an invalidation of an early decision may cause invalidation of
most decisions below it.

We studied the boot loading system of a real telphone exchange and identified
the key design decisions that must have been made while constructing the system.
The system also reflects the order in which the decisions have been made. The
ordering of design decisions allows us to asses the evolution characteristics of the
design.
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In the first node of the example DDT a decision to design a booting system is
made. This may sound trivial but not every system needs a separate start up
system. Parts of the system may be started and shut down autonomously for
example.

Second decision is the topology of the boot system. We considered three
possibilities: completely distributed system, centralized system and a hierarchical
system. There were many factors and tradeoffs for each solution. The example
system that we studied was centralized.

A distributed booting system where the nodes boot autonomously is least
sensitive to the capacity of the communication network. On the other hand it
requires that nodes have permanent local memory since the software to be loaded
is not fetched over the network but loaded locally.

Local memory in the nodes is not needed in a  centralized booting system. On
the other hand a centrally controlled system does not exclude the use of local
memory. In this respect the central system is more flexible.

A centralized system can be seen as a special case for hierarchical scheme
where the boot control nodes for a hierarchy and the leave nodes in this tree each
serve a partition of the nodes to be booted. A hierarchical system would have
some performance benefits by enabling parallel exception handling and by
interleaving the services of different nodes. Also if the physical topology of the
network was hierarchical it would be a natural choice, however our system is
single level because there is only one node capable of acting as a server.

If the nodes were homogenous the boot system node could use simple
broadcast to send the same software simultaneously to all nodes. In our example
system the software for nodes can be different.

On the next level in the DDT is investigated whether the underlying network
supports multicasting of messages. If multicasting is supported, like in the
example case, the boot loader node can serve nodes in parallel. Otherwise the
nodes must be serviced sequentially.

There are two options for the initiation of the communication in the boot
protocol. The central boot control node can initiate communication after an
appropriate period that is needed for the nodes to power-up or the nodes can
request the central boot server to supply the loading and initialization sequence.
The latter option is chosen in our case as the power-up times of the nodes have
substantial variation and this scheme automatically adapts to this.

Next a buffering scheme of the requests in the boot server is considered. The
main requirement for the buffering is the ability to combine similar requests into
pools that are then serviced using multicast mechanism. As the access devices in
our example are independent of each other we decided to allow arbitrary
reordering of request pools.

6.2 Sources of Variance in the Boot Loader

The boot loader in our telephone exchange contains many sources for predictable
variance.
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The nodes in the system have different load and initialization procedures. They
contain a bootstrap loader in ROM and there exist different variants of this
software. The bootstrap loader must be used to load the actual boot client and
initialization program into the node. Also the behavior of the different access
nodes varies in the error situations. Some of the latest models contain an
elaborated selfdiagnostic software that can report errors in an itemized fashion
while the oldest models just silently die.

It is also possible that in the future the access nodes could support writeable
permanent memories (FLASH memory).

The number of nodes can vary from few nodes to few hundred nodes at the
present. The maximum size of the system is likely to grow  in the future. Also the
number of different devices keeps growing.

The communication channels from the boot loader node to the access nodes
uses the same technology (PCM) in the current exchanges. However, the speed of
the channels may vary from 16 Kbs to 64 Kbs. In the future radical changes in the
technology and the speed of the links can be expected.

Topology of the communication network is a star with the boot load controller
node in the middle. Although there is no variation in the topology right now it is
possible that it can change.

6.3 Analyzing Change Requests

The DDT can now be used to analyze the impact of different change requests for
our system. In the analysis only the decisions that were actually made are taken
into account. Alternative decisions are removed from the DDT. This makes the
topology of the DDT a genuine tree.

First the decision nodes that are effected by the new requirements in the change
request are located. Next the effected nodes that are not in a subtree spanned by
another effected decision node are selected. These nodes are the closest ones of
the effected nodes to the root of the tree.

Next we analyze the effect of the new requirements on the selected decisions. If
a decision is invalidated all the decisions in its subtree are also possibly
invalidated or they are rendered meaningless. It is clear that the closer to the
leaves the impacted decisions are located in the tree the smaller the effect on the
design is going to be.

Invalidation of a decision node doesn’t necessarily result in invalidation of all
subsequent decisions. It is also possible that the effected decision node can be
simply removed. This happens when the decision issue of the node is rendered
meaningless. For example if the system hardware is changed some architectural
options might become impossible.

A change request can also result in new nodes to be added to the DDT. In these
cases the decisions below the new node must be analyzed in the context of the
new decision. It is possible that parts of the tree will be invalidated in this case.
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6.4 Examples of change request analysis

Let’s first analyze a case where the timing requirements of the access devices are
changed. A new line of access equipment is introduced that has a limit for the
time that it can wait for the boot server to service the request. The limit is
hardcoded into the ROM in the devices and it cannot be altered.

Our design currently allows the boot server to collect requests into buffers and
serve the grouped requests in arbitrary order. This leads to unpredictable variance
in the response time of the boot server.

Now we can locate the design decisions that are affected by the new
requirements from our decision tree. It turns out that the design decision that
allows the reordering of requests is actually the last one in our tree. We can
immediately see that the impact of the change request on the architecture of the
system is not going to be very big.

By adding a new design decision at the bottom of the DDT the system can be
adapted to take the timing requirements of nodes into account. This decision
refines the decision to allow collection and grouping of requests.

In the second example we get a change request where the capabilities of the
access equipment
are increased and
our system is
required to take
advantage of those.
A mass storage
module is attached
to each node. The
storage device is
large enough to
contain all
software that is to
be loaded in each
access device.

We can locate the decision that is affected by the new requirements to the root
of our DDT. The impact of this change request is going to be very big on the
system architecture. The new requirements together with the constant growth in
the number of access nodes in typical exchange configurations lead us to consider
a distributed architecture justified. We decide to aim to maximize performance
and the scalability of the system in the future.

We can now analyze the decisions below this node in the new context. It is
easy to see that all of the decisions made in these nodes are rendered meaningless
in the new context of distributed boot system. A new design decision path must
be built starting from the “Distributed boot system” node.

We can argue that the decision of whether the nodes have permanent writable
storage has been made too early in our example design. If we could have made it
in a later stage the impact of the addition of mass storage to the access nodes

Limit collection window to T

Clients can wait at least T

Faults are easier to handle
Algorithm can degenerate to
sequential

robust system

Figure 3: additional DDT for a change in timing
requirements
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wouldn’t be so big. Such system could for example facilitate both autonomously
booting nodes and centrally controlled nodes.

7. Conclusions

Software system has to face many changes during its lifecycle. Some of these
changes can be anticipated some come as surprises. Software systems can be
designed to be flexible in terms of anticipated changes. Flexibility is achieved by
structuring the system utilizing abstraction, indirection, late binding or some
other variance mechanism.

Often designers are not able to utilize existing structures while responding to a
change. They make the decisions on how to react to change requests relying only
on local information of the single change request. Change request is not analyzed
in terms of the overall design. Requests are not classified, nor are the impacts of
different options on how to react to the requests. As a result the overall system
structure deteriorates.

We propose a mechanism to oppose this development by making the design
knowledge explicit. This knowledge is organize into a design decision tree. Such
a tree contains system wide design information in a form that can be used to
analyze change requests and determine their impact on system structure. Since
the tree is maintained through the life cycle it is the evolving back bone of design
knowledge. It supports the system architecture and prevents its deterioration.
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1 Introduction

Product families are united by common abstractions. When common abstrac-

tions can be directly translated into common implementation design elements

and software components, reengineering and reuse are facilitated. But direct

translation is often limited, however, by exigencies of performance, packaging,

and product evolution. The result is an introduction of code-level sacri�ces in

commonality in which abstraction boundaries are recon�gured, inter-component

communication patterns are tangled, and components are specialized and tai-

lored. The consequences of these code-level sacri�ces in commonality can be

signi�cant, since work is shifted from leveraged common design elements to a

diversity of product-speci�c realizations. While this diversity may o�er speci�c

advantages in performance or packaging, it also can negate the potential leverage

of reengineering and reuse at the product-line level.

In this position paper, we consider an approach to product-line reengineering

that may mitigate some of these di�culties. The approach is based on a combi-

nation of design management, program analysis, program annotation, manual

restructuring steps, and tool-assisted semantics-based program manipulation

techniques. A premise is the folkloric observation that design decisions, while

conceptually localized at the outset, translate (as a result of optimization and

evolution) into components and code fragments that may be widely di�used in

an actual system implementation. The concept of design patterns, for example,

is an acknowledgement that the realization of a single design concept may in-

volve multiple interrelated program elements. While patterns are useful design

abstractions, however, even their structure may be di�used as code is tailored

and specialized.
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In the absence of design information, revision of a design decision at code

level is thus complicated by the need to reverse-engineer the code into a model

that reunites the diverse elements into the lost common abstraction. Abstraction

recovery is a familiar challenge in reengineering (and now especially familiar in

the form of the \Year 2000" problem). When extensive optimization has been

performed, whether by designer, programmer, compiler, or program manipula-

tion system (e.g., with partial evaluation), this problem becomes very hard. We

focus in this position paper on a problem that is less challenging, more tractable

in the long term, and perhaps more valuable too, in which design information (ei-

ther recovered or retained) is assumed to be available. Speci�cally, we consider a

combination of program analysis, annotation, and manipulation techniques as a

means to support code-level product-line evolution, even when individual prod-

ucts need to sacri�ce conformity to a common set of abstractions and structural

constraints.

Structural locality and views.When a software engineer alters a program,

he or she needs to aggregate conceptually all parts of the program that bear

on the change being made. Powerful abstraction mechanisms provide ways to

organize program text so these conceptual \localities" are often also syntactic

localities, enabling both programmers and their tools to focus attention within

a local scope and avoid expensive or infeasible global analyses. This facilitates

evolutionary change, understandability, and composability, and is a motivator

for increasingly powerful abstraction mechanisms.

Di�erent tasks require di�erent organizing views, however, and there are

many cases where a single perspective, as embodied in a particular organiza-

tion of code, is not adequate. For example, in object-oriented programs there

are many notions \relatedness" among code fragments in which conceptual lo-

calities are di�used in the actual code base. This suggests the concept of a

\structural view" of code, components, or system. Here is a simple example:

In single-inheritance object-oriented languages such as Java and Ada95, given a

single method name, distinct organizational perspectives arise when looking at

that name with respect to class hierarchy, package structure, and overloadings.

In this case, the pertinent views can all be readily extracted from a body of code

with minimal analysis.

The idea of a structural view is to bring together pertinent structural ele-

ments as needed to facilitate a particular analysis, capture of design informa-

tion, or evolutionary change. At an early stage of design, a speci�cation-derived

abstraction may be embodied in a single software component (or architectural

element). As design proceeds and design trade-o�s are addressed, this convenient

relationship will be undermined in various ways.

Examples of structural sacri�ce. Many kinds of change could be made

that involve alterations to structure, and most of these are familiar at the level of

routine coding. A component could be inlined and specialized in multiple places.

The component could be replicated, with each copy specialized to serve partic-

ular subsets of uses. A component could be combined with other components

and specialized. Portions of a component may have common features with por-
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tions of other components, motivating their being extracted into new separate

subsidiary components. Case analysis could be used to facilitate specialization

of a fragment of code. (This \trick" from partial evaluation is frequently used

explicitly by programmers to achieve analogous optimizations at the function or

class levels, or even on class hierarchies.)

Consider a case where a design decision is made to copy a particular mutable

data structure whenever there is a possibility of an alias being introduced. This

decision can translate into a large number of distinct operations placed in diverse

code locations, along with an invariant, often not explicitly expressed in design

or code, that a programmer maintains informally. An analogous case at larger

scale is the insertion of data structure maintenance operations (such as rebuild-

ing a database index or balancing a search tree) at strategic points in a system.

When in each local context these operations are integrated and optimized on

the basis of particular properties of that context, changes in the abstraction be-

come increasingly di�cult to implement. There is an directly analogous situation

among the diverse elements of a product line.

In each of these cases, given only the resulting program text, recovery of the

original design structure can be di�cult or intractable. Thus, while a product line

may be founded on common abstractions, the realizations of these abstractions

in the individual members of the product line may not be related in any obvious

way.

2 Approach

Under these circumstances, how can we make evolutionary changes to a common

abstraction in a product line? We consider four ideas related to the particular

aspect of structural change: (1) systematic techniques to carry out structural

change, (2) maintenance of design records to avoid information loss, (3) mix-

ing informal and formal steps in structural evolution, (4) simultaneous multiple

views.

1. Systematic techniques for structural change. Program analysis, an-

notation, and manipulation techniques for carrying out structural changes in

software are being investigated by a number of researchers. Techniques include

code migration across abstraction boundaries, class hierarchy reorganization,

systematic representation change, specialization of types and classes, coalesc-

ing of abstractions (to introduce \back channels"), and the like. Many of these

techniques are usable even in the absence of speci�cations of functionality or

architecture, and can o�er speci�c correctness guarantees.

Program re�nement techniques may also be applicable. But while there is

an obvious relation between support for evolution and for re�nement, these con-

cepts should not be equated. The techniques listed above, for example, do not

necessarily re�ne code, they merely reorganize it. There may not be meaningful

directionality in the change, in the sense of program re�nement. (Note, however,

that without explicit attention to design record, program transformations tend
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to lose information:Return to a previous state in a derivation may require global

analysis, even when the steps from that state all involved only local changes.)

What happens to software architecture as code is restructured? We argue

that software architecture is itself an idealization, since optimizations can dis-

turb boundaries. Indeed, structural architecture may itself be only a (particular)

structural view of code and components, and structural changes to code may not

a�ect the architecture, but only the account of its relationship (as a view) with

the actual code. This motivates an aggressive approach to record keeping through

the development and evolution process.

2. Role of design record. Judging by reverse engineering costs, a large

amount of information is lost in the programming process. It has been estimated

that the DoD spends almost as much reverse engineering older systems (i.e., re-

covering lost or unexpressed information) as it spends developing new systems.

Information can include functional and architectural speci�cation elements, for-

mal and informal expressions of design rationale, test cases, con�guration infor-

mation, and so on. Information is lost for three reasons. First, it was expressed

at an earlier point, but the information was not appropriately associated or

linked within a system design record and so cannot be readily located. Second,

the information is present, but the system has evolved and so the correctness of

the information can no longer be con�rmed. Third, the information was never

explicitly captured because the cost of doing so (expressing and capturing it) is

too great.

When structural changes are made using formal techniques, tools can gather

information, including suitable anchors in various versions of code and speci�ca-

tion, that constitutes a record of action. This can link a code fragment back to its

original context, as well as linking an initial common abstraction to its various

manifestations distributed in multiple versions of detailed design and program

text. It also enables a \replay" approach to revisiting early design decisions (as

was proposed by several groups more than a decade ago). Design record is obvi-

ously primarily a matter of �ne-grained bookkeeping. The challenge is to reduce

expression costs so capture can be done even in early prototyping e�orts.

There are alternatives to replay that often may be more appropriate. The

premise of replay is that the best way to revise a decision is to return to the

point where it is most explicitly manifest, make the change, and revisit sub-

sequent decisions. In many cases, however, the abstractions were never clearly

evident, either because of design tradeo�s or because they were tacit even in

the speci�cation. That is, there is nothing to return to in the replay model. An

alternative approach is to use structural analysis and manipulation techniques

to create new organizing views of a body of code that brings the abstractions

into sharper focus.

Structural manipulations also have value for reuse. Designers of shared pro-

gram components wrestle with how to balance performance and generality|

whether to sacri�ce performance and use overly general standard components,

or to handcraft many specialized instances, with consequent risks and costs.

Many commercial applications achieve high performance through extensive code
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replication and specialization. Conventionalized domains with established com-

ponents could be made more broadly useful if structure manipulation tools could

facilitate both the tuning of interfaces and the specialization of components.

3. Manual and hybrid techniques. It is an obvious point, but when

mechanical techniques cannot be used manual methods must be used to make

structural changes, or to make assertions or claims about speci�cation or code.

(Perhaps ironically, acceptance of the use of manual and informal techniques

could make systematic and formal techniques more readily adoptable by prac-

ticing software engineers, because of the need to address the di�culty of incre-

mentally assimilating the systematic techniques into practice.) When manual

techniques are used, however, design record maintenance can be more di�cult.

One possible approach is to maintain a formal binding of annotations to code

(and links among code fragments) even when the annotations themselves are

informal and textual. The potential is that abstractions can be reengineered

even when they have been dispersed through informal steps, because the design

management system provides dependency/impact analysis and a comprehensive

catalog of possible places to look.

4. Use of multiple views. Creation of a new structural view of a com-

ponent or system can involve extensive analysis, annotation, and manipulation

e�ort. Often the manipulations involve primarily rearrangement of abstraction

boundaries, and the underlying computation is essentially the same. In these

cases, the new view can coexist with other views as alternative perspectives on

a system, bringing together di�erent elements depending on which abstractions

pertain to a particular evolutionary step. Of course, when computationally sig-

ni�cant changes are made, they may invalidate a view (for example, because they

exploit a code juxtaposition evident only in other views). The point, however,

is that the range of kinds of structural views required for program evolution is

rich, and can conceivably include views of a system organized around speci�c

speci�cation elements.

3 Conclusion

Status. In the Fluid/ACT project at Carnegie Mellon University, a tool pro-

totype (under development for the past year) will enable exploration of many

of these ideas. The tool will support annotation, analysis, and manipulation of

Java programs. Restructuring manipulations can be carried out to create mul-

tiple structural views. It maintains a exible intermediate representation with

�ne-grained versioning to provide design-record support. The tool is interactive,

carrying out analyses and manipulations under programmer guidance and pro-

viding visualization support. (See the referenced papers for details concerning

Fluid/ACT approaches to program structural manipulation and to annotations

and analysis.)

Summary. Structural manipulation facilitates reorganization and tailoring

of software component interconnection designs. An initial structural design is

a signi�cant commitment in usual software practice. It has long-term conse-
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quences, but it is rarely correct at the outset and even more rarely su�ces

for the lifetime of an evolving product line. Even in conventionalized domains

and product lines, where there is general agreement on pertinent abstractions

and associated software representations, the key abstractions may nonetheless

need to evolve in small ways. Barriers to management of structure often inhibit

architectural and API evolution, due to high cost and risk. In systems that in-

volve mobile code and dynamic runtime recon�guration, management through

structural views may have particular value in relating behavioral constraint and

structural commitment.
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1. Introduction

This paper addresses the issues with respect to product definition and product
development, for an organization where several business-lines with their own
bottom-line responsibility want to use a product-family approach.

2. Problem Definition

When an organization decides to use a product-family approach for more
efficiency, several issues come up.

In our case we currently have several application product groups, which each
address a certain separate segment of the market. Also there are product groups
which build common components. All groups have their own financial bottom-
line responsibility.

Each application product group defines, develops, produces, maintains and
sells systems to the market, with its own system architecture.

From the past, there is a distrust whether the common component groups react
quickly enough on issues which pop up in the market.

One year ago the organization decided that the next generation of systems
could only be developed if the product groups would cooperate. This mainly
because of:
• development cost reduction,
• material & labor cost reduction and
• additional common functional requirements.

 This lead to a single platform development project, which will also create the
first complete systems to be delivered to the market.
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 The issue now is that future systems have to be developed in such a way that:
• Time to market can be short,
• The architecture is not polluted,
• Problems from the field are adequately solved,
• The right priorities are set (long term versus short term),
• Development resources are used efficiently and effectively,
• Available (external) assets are used as much as possible
• Ideas, Specifications, Designs and Implementations are reused consistently.
• There is no single starvation (the biggest profit maker gets all it asks, while

the smaller ones never get a thing),
 The assumption is that the (application oriented) product groups can keep their

bottom-line responsibility.

 3. Scope

 When thinking about an organization which is able to enforce reuse, a number of
issues come to mind, which should be accounted for. These are:

• which business model is used

• which processes should be in place

• which organization is needed to support the business model and the processes

• how to handle configuration management

• etc.
 This paper only describes the second bullet.
 It is assumed that the current business model will not change drastically, so the

application groups will be profit centers which define, develop, produce, maintain
and sell systems to the market. It is still open whether component groups should
be regarded profit or cost centers.

 The results of all these groups are consolidated at a so called “general
business” level.

 4. Processes for Reuse

 The following model describes information flows and processes needed to
develop systems wanted by a Market in an efficient way.

 The architecture of the systems is such, that there is a big common part (called
the platform) and certain (smaller) parts which follow the market dynamics easily.
The platform can be created and maintained by one development activity, while
there are several development activities close to the market and application, which
will create and maintain elements specific for that market and application
(Product_Specific).
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Orders

Appl_Roadmaps

 Market_Info and Technology_Trends are translated into Roadmaps and
Product_Requests (created per market and application area).

 The product requests include feature lists, priorities and expected revenues, so
a good, business driven decision can be made.

 The Appl_Roadmaps are matched onto the available technology and resources
in the complete organization, to get Consolidated Roadmaps at general business
level.

 Based on the consolidated roadmaps and product requests, a decision is taken
whether a feature is to be created as product specific or as platform extension.
These decisions are taken at general business level, keeping the following issues
in mind:

• prevent future inefficiencies

• prevent pollution of the architecture

• available and needed capacity with the required skills

• estimates of costs and revenues

• market priorities
Two kind of decisions are needed
1. Long term decisions, handling the contents of yearly releases of the

platform. Typically these are requests for a new product development
2. Short term decisions, handling more specific requests. Typically these are

requests from ongoing product development or Problem Reports and
Change Requests.

Based on the decisions development orders are issued to create the systems and
the platform.
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4.1 Making Roadmaps and Product Requests

Appl_
Define_

Products
.2

Appl_
Create_

Roadmaps
.1

Market_Info

Product_Requests

Constraints

Technology_Trends

Market_Info

Consolidated_
Roadmaps

Appl_Roadmaps

Making Roadmaps and Define Product Requests is part of the Business Process
Planning (BPP). The Application (or Appl_ ) is added in the model to show that it
has to be done for each Application area separately. The BPP is a process that
precedes the Product Creation Process (PCP). The BPP consists of Strategy
determination (Marketing planning, Technology planning, and Policy definition)
and Planning (Product line planning, Business planning, Programming).

Roadmaps are made for each application area separately. The main inputs are
Market Info (such as competitors product info, new or improved application
functionality, etc.), and Technology Trends (such as new operating systems, new
user interface world standard, other technological inventions that must be inserted
in the products). The current consolidated roadmaps at general business level are
used as an input also. This must be seen as the basis where to built upon.

The Products are Defined for each application area separately. It generates
product requests, based on the application roadmap and market info. The priority
of various (technology and market driven) product enhancements is determined.
The product requests are input to Allocate Developments.

4.2 Allocate Developments

Based on Application Roadmaps and Product Requests, the Consolidated
Roadmaps at general business level are made, and is decided which developments
are started.  Furthermore these developments have to be allocated.
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The long term decisions (right part of the picture) are taken on general business
level. All requests in the form of product requests or applicational or
technological roadmaps are held against the already committed consolidated
roadmaps.

Based on issues like market priority, available and required skills, costs,
revenues, etc., Development Orders are issued, provided they are within the
Boundaries set by Business Management. If these boundaries should be exceeded,
then a recommendation (with several scenarios) is presented to business
management, who then takes a decision.

For short term decisions (like PR_CR on existing products), the application
area decides on the urgency (left part of the picture). Then at general business
level, the change is allocated, within the boundaries set by business management.
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4.3 Create Systems
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The Create Systems process takes care that the Systems are being developed in
accordance to the consolidated product portfolio and resulting Development
Orders.

The key issue that is addressed in this way, is the top down planning of
platform development and reuse, which is a necessary requirement for profitable
reuse.

Development orders can be of various types covering one or more phases like
Concept & Feasibility study, project definition phase etc.

The development orders can be orders to develop new releases of the platform,
development of new systems and taking care of Change Request and Problem
Reports that come from the field and the manufacturing environment.

Also, mainly based on longer term market trends and technology trends,
development orders to change the architecture (that is the base of the platform)
can be issued.

As a concept that is used to verify the usefulness of the developed platform, the
project contents will be made such that the platform performance and
functionality is proven by a system that will be delivered to the market place.

Within the create systems process a number of main processes can be seen that
make it possible to create the desired systems. Criteria used for the process
definition are clear process objectives and scope. Each process has its own time
cycle.
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Develop Architecture

An important issue in the new way of working with a product family based on a
common set of assets is the control of the Architecture, being the basis of the
product family concept.

The architecture can be seen as a set of concepts that are the basic rules that
need to be met fully throughout the family (e.g. Keep User Interface and
Application clearly separated) together with a global framework.

Essential characteristic of the architecture is the fact that it is independent of
the specific technology that can be used to implement the architecture; a
communication channel for instance can be implemented by a LAN connection or
an RS232 interface depending on required speed and price requirements.

The Develop Architecture process takes care that the architecture is maintained
over the years based on the long term technology and market requirements. This
to assure that the architecture asset (=money invested) is and stays being used in
an optimal way.

The orders that are input to the process can vary from an order to study the
impact of certain trends for the architecture, to an order to adapt the architecture
to accommodate new necessary requirements, e.g. due to other application area’s
that are to be covered (change of application domain).

Develop Platform

The platform development process takes care of the creation of the required parts
of the platform based on the architecture.

Furthermore it is concerned with, again, the external technology- and market
trends that influence the technical implementation of the platform.

The deliverables of the platform development consist of a set of hardware
building blocks and software building blocks (executables) that can be integrated
to a complete system that is sold.

The platform becomes available in releases with fixed intervals (e.g. once a
year). To support e.g. bug fixes in the platform that are needed platform wide (e.g.
because of a safety issue) also versions of a specific release can be created.

The desired situation is that only platform releases are delivered and that
versions of the certain releases are minimized.

The development orders can both concern new functionality or incorporation
of system features/functionality that needs to become part of the platform and are
not yet part of the platform.

Quick Specific Platform Update

This process is only active in an exceptional situation, where it is required to have
a Specific Update of the Platform, to support a specific product release or fix a
bug, that cannot wait until the new platform release becomes available. This
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platform update is product specific and temporary and will only exist until the
next platform release is available.

NOTE: Although the model enables to do quick platform updates, we
strongly advise not to use it. The possibility is included, because experience
learned us that these action will be taken. It is better to be prepared then and
manage it.

Application Develop Product

This process (which exists per application area) takes care that the necessary parts
of the system for a specific application area are developed. It also takes care of
the integration of the systems using the platform deliverables, other components
and own build components (Product_Specifics).

Building the total system can range from packaging and configuring a number
of platform parts, to the building and integration of application specific parts,
platform parts and other components.

The control and maintenance of the product specific components is also
performed in this process, resulting in system releases and versions that are
delivered to the market place.

Supply Components

This process concerns the orders to create and maintain or buy those Components
(subsystems) that are not part of the platform, but have a generic use. The current
architecture is the base for the component design and interfaces.
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Abstract. This paper briefly reports on the ERW’97 (European
Reuse Workshop ’97) by providing an overview of its sessions.
The session regarding the adoption of reuse practices across a large
organisation is presented in more depth. In this session, experiences
and lessons learned in the ROADS project (Reuse Oriented
Approach for Domain based Software) were presented and
discussed. The ROADS project consisted of the realisation of four
pilot experiments of reuse adoption in four different Business Units
at Thomson-CSF and put domain architecture issues in the context
of the overall reuse processes.

1. Introduction

The European Reuse Workshop (ERW ’97) was held in the Royal Windsor Hotel
(Brussels, Belgium) on 26th and 27th November 1997. It was the first of a series
of workshops with the aim of sharing and promoting reuse adoption initiatives
across Europe and world-wide. ERW gathered together almost 60 applied
researchers, industrial software practitioners and managers involved in software
process improvement and in the adoption of reuse practices.

This paper reports on some of the reuse experiences presented in the workshop.
We first describe the workshop organisation and provide an overview of all the
sessions. This paper, however, does not address all of the workshop sessions, but
focuses the attention on one specific session regarding the application of reuse
across a large organisation

This session consisted of the presentation of a series of reuse experiments
carried out in Thomson-CSF within the project ROADS (a Process Improvement
Experiment project partially funded by the European Commission).  The project
was carried out in collaboration with the European Software Institute (ESI) and
Prosperity Heights Software (PHS). The author took active part in the project and
thus the session report is enriched with first hand information collected during the
execution of the project.

The rest of the paper is structured as follows. Section 2 provides an overview
of all the ERW’97 sessions. Section 3 introduces the ROADS project, the

mailto:Sergio.Bandinelli@esi.es
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assessment and improvement experiences.  Finally, Section 4 concludes by
deriving some useful lessons from the project.

2. The European Reuse Workshop (ERW’97)

At ESI (European Software Institute) we observed that there is an increasing
interest in Europe in understanding and applying reuse practices and that much
work was already being carried out in this field. A measure of this is the number
of initiatives funded by the Commission under the ESSI programme and the
interest demonstrated by ESI members in reuse technology. For this reason ESI
decided to organise a European Reuse Workshop to review the state of the art and
practice and to foster the interchange of reuse experiences among software
practitioners.

The workshop had an excellent representation from the European industry
(more than 60% of the participants), complemented with high quality
representation from the academia. A significant number of European countries
were represented, including Austria, Belgium, Finland, France, Germany, Italy,
Spain, Sweden and UK and there was also participants from overseas (Canada
and USA).

The workshop theme, “Process and architectural issues in reuse adoption”
captured two key aspects of software reuse today: on the technical side, the
architectures as a main reusable asset across projects and on the organisational
side, the processes needed to consolidate reuse practices in a developing
organisation.

Most of the workshop time was dedicated to discussion-oriented experience
sessions. Each of these sessions gathered a set of position papers addressing
related issues. There were six experience sessions structured as follows:

• Experience session 1: Reuse in the context of process improvement:
models and current practices, chaired by Mike Mannion, Napier University.

• Experience session 2: Development for reuse: from software components
to domain analysis and product family architectures, chaired by Magnus
Nilsson, Ericsson.

• Experience session 3: Reuse co-ordination and experiences in a large
corporation, chaired by Jean-Marc Morel, Bull S.A.

• Experience session 4: Reuse in the Information Systems domain, chaired
by Bob Smith, ESI.

• Experience session 5: Reuse projects in SMEs and large companies,
chaired by Jean-Marc De Baud, Fraunhofer IESE.

• Experience session 6: Reuse beyond the software development cycle: non-
technical factors in reuse adoption, chaired by Sergio Bandinelli, ESI.

In addition to this, the workshop included two keynote presentations and a final
panel session.

 Mehdi Jazayeri, Professor of Computer Science and Head of the Distributed
Systems Group at the Technical University of Vienna, gave the first keynote
presentation. The title “The promises and the premises: a critical look at software
reuse” anticipated a controversial presentation. Mehdi Jazayeri argued that
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nowadays the emphasis on reuse is misguided, that is, reuse distracts from the real
goals, promises more than can be delivered and is based on wrong premises.
Finally he pointed out that reuse is not always the right thing to do. It must always
be the result of a good engineering judgement and practice.

Paul Bassett, Senior Vice President of Research in CAP-Netron Inc. and author
of the book “Framing Software Reuse: Lessons From the Real World”, gave the
second keynote presentation entitled “Ushering in the Era of Software
Manufacturing”. Paul Bassett defined reuse as the process of adapting generalised
components to various contexts of use. In other words, he stated that “reuse” is
considered at construction time, while “use” is a run time concept. Paul Bassett
then presented frame technology as a way of doing adaptive reuse. The reusable
frames contain commands and variables, which define the execution and
construction behaviour of the frame. The frame commands guide the assemblage
of the frame into source modules as in a manufacturing process. He finally
presented remarkable results from projects using frame technology. This included
a time-to-market reduction of 70% and a project cost reduction of 80%.

The panel session addressed a number of issues that were raised during the
workshop. It was chaired by John Favaro (Intecs Sistemi) and the panelists
included Colin Tully (CTA), Grady Campbell (PHS), Alexander Ran (Nokia
Research Center) and Paul Bassett (CAP-Netron Inc.).

3. Reuse across a Large Corporation

Experience session 3 reported on the experience gathered in the reuse adoption
experiments of ROADS project (Reuse Oriented Approach for Domain based
Software). These pilot experiments were performed during 1996 and 1997 in four
different Business Units of Thomson-CSF, with the collaboration of the European
Software Institute (ESI) and Prosperity Heights Software (PHS). The project is
partially funded by the EC as a PIE (Process Improvement Experience) under the
ESSI programme.

Each of the experiences addressed a distinct domain and was motivated by
different business objectives:

• The first experiment is carried out in SDS (Systèmes de Dètection de
Surface) in the domain of Air Traffic Control (ATC) and has the main
objective of improving time-to-market.

• The second experiment is performed at DSM (Division Systèmes de
Missiles) in the domain of control and command of short range air defence
systems. The most important aspect in this domain is reliability and thus
the business driver here is to improve the reliability of systems.

• The third experiment is done at Thomson Training & Simulation (TT&S)
Unit in the domain of training simulators. The business goal here is to
obtain significant reduction of costs.

• The fourth experiment is carried out at SYSECA in the domain of Traffic
Management (planning of traffic). The objective is to improve the
flexibility and robustness of applications.
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The methodological approach followed was common to all of the experiments and
co-ordinated at the corporate level. The approach consisted in an adaptation of the
reuse adoption process described in [SPC93a]. (See Figure 1).

Figure 1
Reuse Adoption Process (Adapted from [SPC93a])

The initiation of the reuse programme at Thomson-CSF has its roots in process
improvement. Thomson-CSF started a corporate process improvement
programme in 1992 using the CMM model [SEI95] as a basis. As part of this
programme, several Thomson Business Units have undertaken improvement
actions to reach levels 2 and 3 of the CMM. Since the CMM does not explicitly
address reuse issues, this action was complemented with the creation of a specific
SIG (Special Interest Group) on reuse in 1994 and a reuse leader was appointed at
the corporate level. The ROADS project was carried out in this organisational
context.

The first step in the ROADS experiments consisted in the assessment of the
current situation. This included a domain assessment and a reuse capability
assessment in each of the business units, preceded by a training action to present
the overall approach to the staff involved in the project.

The planning and implementation of the reuse actions was performed in an
incremental manner. Each of the increments consisted in developing an action
plan and going through the domain engineering activities as defined in the Reuse-
Driven Software Processes (RSP) [SPC93b]. The documents produced during the
increment were reviewed at the end of the increment and the feedback was used to
plan the subsequent increment. The duration of each increment was quite short
(typically around 3 months) to ensure a fast feedback loop.

3.1 Assessment Experiences

Two types of assessment were conducted at the beginning of the ROADS
experiments: a reuse capability assessment to characterise the state of practice as
far as reuse is concerned and a domain assessment, to measure the reuse potential
of the domain. The main objective of the assessments was to guide the planning of
reuse adoption by helping to identify the priorities for each Business Unit.
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The assessment teams included persons belonging to the unit being assessed
(i.e., self-assessments) plus a facilitator with the role of introducing the
assessment model and manage the meeting. The assessment team size ranged from
three to eight individuals. The typical duration of each of the assessments was one
day.

The reuse capability assessments used the Reuse Capability Model (RCM)
[SPC93a]. This model consists of a set of goals grouped in four reuse capability
levels: Opportunistic, Integrated, Leveraged and Anticipating. The assessment
process rates the extent to which the organisation meets each of these goals.

The domain assessments examine the domains from a business perspective to
provide an indication of the potential for profitability in applying reuse. The
assessment model used, called Domain Assessment Model (DAM) [SPC93a]
consists of five factors, namely market potential for products, existing domain
assets, commonalities and variabilities between systems in the domain, domain
stability and maturity and domain standards. Each of the factors is rated in a 1 to 5
scale and the results are plotted in a Kiviat diagram to appreciate the relative
strength of each of them.

3.2 Improvement Planning and Implementation

At writing time, five increments have already been performed in each of the
ROADS experiments. The incremental nature of the adoption process makes it
possible to start obtaining results very early in the reuse adoption process. This is
fundamental to keep the process on the right track and to demonstrate (to
management and to the practitioners working in application projects) the benefits
of the approach by providing tangible results and benefits.

The typical plan for an increment includes the following items:
• Domain definition, including a glossary and domain communalities and

variabilities.
• Decision model, a formalisation of the variabilities of the domain

including the range of variability.
• Product family engineering, development of configurable and adaptable

work-products of all kinds (including requirements documents, domain
architectures design, code test, project plans, contracts, etc.)

• Process engineering, discussion on the changes to be introduced in the
current application development process

• Domain strategy and planing of the subsequent increment.
Generally speaking, all the experiments completed successfully the domain
definition and most of the decision model (at least for some significant sub-
domain). Regarding product family engineering, each of the experiments
concentrated the efforts in those work-products that could maximise the return on
investment. This depends, among other factors, on the nature of the domain and
on the stage of development of application projects. Finally, process engineering
was the activity that most stretched people’s ability, since it required to identify
the changes in the current practice to incorporate reuse.

To illustrate the kind of problems faced in the project, we provide a couple of
examples regarding two of the four experiments: one corresponds to the
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experiment in the domain of Air Traffic Control (ATC) and the other to the one in
the domain of training simulators.

Air Traffic Control domain

The Air Traffic Control group has a line that develops small systems for control
centres in airports. These systems have been delivered world-wide to more than
15 Civil Aviation Authorities of various countries, including Denmark, Mexico,
Bulgaria, various ex-SSSR republics, etc.).

Since 1992 the international competition has become stronger. This motivated
an investment in architecture and the establishment of an incremental and modular
development approach. In other words, a “baseline” product is incrementally
enriched with new functionality, as required by clients. The additional
functionality represents a small part of the code since most of it is reused from
previous applications (see Figure 2).

Figure 2
Evolution of the system and reuse rates

This advanced situation regarding reuse in this Business Unit was reflected in
the results of the reuse capability assessment, which showed that several of the
Leveraged level goals were meet to a great extend. Not surprisingly, the first
benefits obtained from the ROADS project in this domain were not in the reuse in
coding phase, but on other phases of the development process. For example:
• the decision model was started to be used in the Bid-NoBid phase (to decide

whether a contract is within the boundaries of the domain),
• the baseline product was better defined and some documents, such software

specification and
• software development plan, were standardised to allow for automatic

generation.
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capability assessment showed that the organisation achieves most of the
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Opportunistic level goals and some of the Integrated level ones. This organisation
has been recently assessed at level 3 of the CMM and the domain assessment
showed that there is good reuse potential. However, the reuse practices are
unplanned and based on code cut&paste.

Figure 3 shows that the effort associated with the different application projects
in the domain tends to decrease as the number of projects increases. However, a
new functional definition of the domain creates a break, making the subsequent
project (the first after the break) much more expensive.

Figure 3
Cost of project application in domain trainer domain

In this context, the ROADS project served to document the existing application
projects (according to commonalities and variabilities). This had al least two
tangible benefits. On one side, it provided the basis for better anticipating the
impact of functional breaks. On the other side, it served as a tool to create
awareness about the current existing functional capabilities in the domain. This
latter issue is especially useful among commercial/business staff to reduce costs
when negotiating new applications with customers.

4. Conclusions and Lessons Learned

There are a few lessons that can be derived from the experience accumulated so
far in the project. These lessons are general enough to be useful for other similar
experiences.

A first observation is that the participation of domain experts in all the
activities is essential for the success of the experiments. However, domain experts
tend to be overloaded and it may be difficult to involve them in the key activities.

Regarding assessment experience it is important to point out that there is not
necessarily a direct relationship between process maturity (e.g., in terms of CMM
levels) and reuse capability. The latter depends on other factors such as the
experience the organisation has in a domain, the level of standardisation in the
domain, etc. We can conclude that
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• The assessments served as a means for reaching a common understanding
within each of the units to determine the strengths of the organisation and the
priorities for improvement.

• It was unclear which improvement actions would address the unaccomplished
goals, making it difficult to plan improvements and assess progress.

The experiments showed that the architecture plays a central role in
determining the existence of a product-line in a given domain. For example,
without a fixed agreed architecture it would be impossible to do incremental
developments in the air traffic control domain. However, the same variations and
flexibility that is necessary for a domain architecture are required for all other
work-products. By allowing this variability all the phases of system development
can benefit from reuse.
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